Advertisement

Laser Direct Writing of Idealized Cellular and Biologic Constructs for Tissue Engineering and Regenerative Medicine

  • Nathan R. Schiele
  • David T. Corr
  • Douglas B. Chrisey
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 130)

Abstract

Conventional tissue engineering typically involves homogenously seeding cells into a scaffold, then manipulating the scaffold either mechanically, using bioreactors, or chemically, using growth factors, in an attempt to tailor the mechanical and biological properties of the engineered tissue. The material composition of the scaffold gives the construct its initial strength; then the scaffold either remodels or dissolves when implanted in the body. An ideal tissue replacement scaffold would be biocompatible, biodegradable, implantable, and would match the strength of the tissue it is replacing, and would remodel by natural mechanisms [1]. Finding or creating scaffold materials that meet all these specifications while providing an environment for cell attachment and proliferation is one of the main goals of conventional tissue engineering. Popular current scaffold materials include poly-l-lactic acid (PLLA) [2] and collagen [3]. Typically, the utilization of scaffolds in tissue engineering employs a top-down approach in which cells are seeded homogenously into the scaffold, then incubated in vitro prior to implantation. Scaffold properties, such as geometric dimensions (e.g., thickness) and cellular in-growth, are limited by the diffusion of nutrients, since these scaffolds do not incorporate vascular structures to transport nutrients and remove wastes deep into the scaffold as in native tissue [4]. Although seeded scaffolds have proven successful in some cases, there remains the need to have greater control of cell placement as well as the placement of additional features such as vascular structures, multiple cell types, growth factors, and extracellular matrix proteins that will aid in the fabrication of the next generation of engineered tissues.

Keywords

Neural Stem Cell Multiple Cell Type Machine Vision System Idealize Construct Idealize Cellular 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A.K Liebschner, M.A. Wettergreen, in Topics in Tissue Engineering, vol. 1, ed. by N. Ashammakhi, P. Ferretti (2003)Google Scholar
  2. 2.
    G. Wei, Q. Jin, W.V. Giannobile, P.X. Ma, Biomaterials 28, 2087 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Jager, T. Feser, H. Denck, R. Krauspe, Ann. Biomed. Eng. 33, 1319 (2005)CrossRefGoogle Scholar
  4. 4.
    H.C. Ko, B.K. Milthorpe, C.D. McFarland, Eur. Cell. Mater. 14, 1 (2007)Google Scholar
  5. 5.
    Y.S. Zinchenko, R.N. Coger, J. Biomed. Mater. Res. A 75, 242 (2005)Google Scholar
  6. 6.
    A. Folch, B.H. Jo, O. Hurtado, D.J. Beebe, M. Toner, J. Biomed. Mater. Res. 52, 346 (2000)CrossRefGoogle Scholar
  7. 7.
    S. Rohr, R. Fluckiger-Labrada, J.P. Kucera, Pflugers Arch. 446, 125 (2003)Google Scholar
  8. 8.
    E.A. Roth, T. Xu, M. Das, C. Gregory, J.J. Hickman, T. Boland, Biomaterials 25, 3707 (2004)CrossRefGoogle Scholar
  9. 9.
    W. Tan, T.A. Desai, Tissue Eng. 9, 255 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Duocastella, M. Colina, J.M. Fernandez-Pradas, P. Serra, J.L. Morenza, Appl. Surf. Sci. 253, 7855 (2007)CrossRefADSGoogle Scholar
  11. 11.
    M. Duocastella, J.M. Fernandez-Pradas, P. Serra, J.L Morenza, Appl. Phys. A 93, 453 (2008)Google Scholar
  12. 12.
    M. Colina, P. Serra, J.M. Fernandez-Pradas, L. Sevilla, J.L. Morenza, Biosens. Bioelectron. 20, 1638 (2005)CrossRefGoogle Scholar
  13. 13.
    K. Salaita, Y. Wang, C.A. Mirkin, Nat. Nanotechnol. 2, 145 (2007)CrossRefADSGoogle Scholar
  14. 14.
    V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, C. Fotakis, Biomed. Microdevices 10, 719 (2008)CrossRefGoogle Scholar
  15. 15.
    D.B. Chrisey, Science 289, 879 (2000)CrossRefGoogle Scholar
  16. 16.
    B.R. Ringeisen, D.B. Chrisey, A. Pique, H.D. Young, J. Jones-Meehan, R. Modi, M. Bucaro, B.J. Spargo, Biomaterials 23, 161 (2002)CrossRefGoogle Scholar
  17. 17.
    C.Z. Dinu, V. Dinca, J. Howard, D.B. Chrisey, Appl. Surf. Sci. 253, 5 (2007)Google Scholar
  18. 18.
    T.M. Patz, A. Doraiswamy, R.J. Narayan, W. He, Y. Zhong, R. Bellamkonda, R. Modi, D.B. Chrisey, J. Biomed. Mater. Res. B Appl. Biomater. 78, 124 (2006)Google Scholar
  19. 19.
    N.R. Schiele, R.A. Koppes, D.T. Corr, K.S. Ellison, D.M. Thompson,L.A. Ligon, T.K.M. Lippert, D.B. Chrisey, Appl. Surf. Sci. in press (2008)Google Scholar
  20. 20.
    B.R. Ringeisen, H. Kim, J.A. Barron, D.B. Krizman, D.B. Chrisey, S. Jackman, R.Y. Auyeung, B.J. Spargo, Tissue Eng. 10, 483 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Doraiswamy, R.J. Narayan, M.L. Harris, S.B. Qadri, R. Modi, D.B. Chrisey, J. Biomed. Mater. Res. A 80, 635 (2007)Google Scholar
  22. 22.
    B.R. Ringeisen, P.K. Wu, H. Kim, A. Pique, R.Y. Auyeung, H.D. Young, D.B. Chrisey, D.B. Krizman, Biotechnol. Prog. 18, 1126 (2002)CrossRefGoogle Scholar
  23. 23.
    D.B. Chrisey, A. Pique, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, D.M. Bubb, P.K. Wu, Chem. Rev. 103, 553 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Pique, D.B. Chrisey, R.C.Y. Auyeung, J. Fitz-Gerald, H.D. Wu, R.A McGill, S. Lakeou, P.K. Wu, V. Nguyen, M. Duignan, Appl. Phys. A 69, S279 (1999)Google Scholar
  25. 25.
    B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvari, D.B. Chrisey, A. Szabo, A. Nogradi, Tissue Eng. 11, 1817 (2005)CrossRefGoogle Scholar
  26. 26.
    J.N. Cawse, Acc. Chem. Res. 34, 213 (2001)CrossRefADSGoogle Scholar
  27. 27.
    P. Martin, Science 276, 75 (1997)CrossRefGoogle Scholar
  28. 28.
    M. Yashiro, K. Ikeda, M. Tendo, T. Ishikawa, K. Hirakawa, Breast Cancer Res. Treat. 90, 307 (2005)CrossRefGoogle Scholar
  29. 29.
    K. Barami, J. Clin. Neurosci. 15, 5 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Doraiswamy, R.J. Narayan, T. Lippert, L. Urech, A Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R.C.Y. Auyeung, D.B. Chrisey, Appl. Surf. Sci. 252, 4743 (2006)Google Scholar
  31. 31.
    J. Lee, M.J. Cuddihy, N.A. Kotov, Tissue Eng. Part B Rev. 14, 61 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nathan R. Schiele
    • 1
  • David T. Corr
    • 1
  • Douglas B. Chrisey
    • 2
  1. 1.Departments of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Material Science and EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations