Advertisement

Laser Interactions in Nanomaterials Synthesis

  • David B. Geohegan
  • Alex A. Puretzky
  • Chris Rouleau
  • Jeremy Jackson
  • Gyula Eres
  • Zuqin Liu
  • David Styers-Barnett
  • Hui Hu
  • Bin Zhao
  • Ilia Ivanov
  • Kai Xiao
  • Karren More
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 130)

Summary

Laser interactions with materials have unique advantages for exploring the rapid synthesis, processing, and in situ characterization of high-quality and novel nanoparticles, nanotubes, and nanowires. For example, laser vaporization of solids into background gases provides a wide range of processing conditions for the formation of nanomaterials by both catalyst-free and catalyst-assisted growth processes. Laser interactions with the growing nanomaterials provide remote in situ characterization of their size, structure, and composition with unprecedented temporal resolution. In this article, laser interactions involved primarily in the synthesis of carbon nanostructures are reviewed, from the catalyst-free synthesis of single-walled carbon nanohorns and quantum dots, to the catalyst-assisted growth of single- and multi-walled carbon nanotubes.

Keywords

Vortex Ring Laser Vaporization Laser Interaction Plume Expansion Carbon Nanohorns 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge support from the U.S. Dept. of Energy, Basic Energy Sciences Division of Materials Science and Engineering, for support of the synthesis science and the Scientific User Facilities Division for the development and support of the advanced characterization tools utilized in this work.

References

  1. 1.
    T.G. Dietz, M.A. Duncan, D.E. Powers, R.E. Smalley, J. Chem. Phys. 74, 6511 (1981)CrossRefADSGoogle Scholar
  2. 2.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)CrossRefADSGoogle Scholar
  3. 3.
    A. Inam, X.D. Wu, T. Venkatesan, S.B. Ogale, C.C. Chang, D. Dijkkamp, Appl. Phys. Lett. 51, 619 (1987)CrossRefADSGoogle Scholar
  4. 4.
    D.B. Geohegan, Chap.4 in Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.K. Hubler (Wiley, New York, 1994)Google Scholar
  5. 5.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee,S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 273, 483 (1996)CrossRefADSGoogle Scholar
  6. 6.
    A.M. Morales, C.M. Lieber, Science 279, 208 (1998)CrossRefADSGoogle Scholar
  7. 7.
    X. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2000)CrossRefGoogle Scholar
  8. 8.
    D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton, C.M. Rouleau, Science 273, 898 (1996)CrossRefADSGoogle Scholar
  9. 9.
    A.A. Puretzky, D.B. Geohegan, G.E. Jellison, M.M. McGibbon, Appl. Surf. Sci. 96–98, 859 (1996)CrossRefGoogle Scholar
  10. 10.
    A.A. Puretzky, D.B. Geohegan, X. Fan, S.J. Pennycook, Appl. Phys. Lett. 76, 182 (2000)CrossRefADSGoogle Scholar
  11. 11.
    R.F. Wood, K.R. Chen, J.N. Leboeuf, A.A. Puretzky, D.B. Geohegan, Phys. Rev. Lett. 79, 1571 (1997)CrossRefADSGoogle Scholar
  12. 12.
    R.F. Wood, J.N. Leboeuf, D.B. Geohegan, A.A. Puretzky, K.R. Chen, Phys. Rev. B 58, 1533 (1998)CrossRefADSGoogle Scholar
  13. 13.
    D.B. Geohegan, A.A. Puretzky, D.J. Rader, Appl. Phys. Lett. 74, 3788 (1999)CrossRefADSGoogle Scholar
  14. 14.
    H. Shinohara, Rep. Prog. Phys. 63, 843 (2000)CrossRefADSGoogle Scholar
  15. 15.
    C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, Chap. 2 in Springer Series in Materials Science95, ed. by C.N.R. Rao, G.U. Kulkarni, P.J. Thomas (Springer, Berlin, 2007)Google Scholar
  16. 16.
    Y.B. Zel’dowich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966)Google Scholar
  17. 17.
    D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 72, 2987 (1998); Appl. Phys. Lett. 73, 438 (1998)Google Scholar
  18. 18.
    R.E. Smalley, Acc. Chem. Res. 25, 98 (1992)CrossRefGoogle Scholar
  19. 19.
    D.B. Geohegan, A.A. Puretzky, R.L. Hettich, X.-Y. Zheng, R.E. Haufler, R.N. Compton, Trans. Mat. Res. Soc. Jpn. 17, 349 (1994)Google Scholar
  20. 20.
    S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai,K. Takahashi, Chem. Phys. Lett. 309, 165 (1999)CrossRefADSGoogle Scholar
  21. 21.
    P.J.F. Harris, S.C. Tsang, J.B. Claridge, S.C. Sang, J.B. Claridge, M.L. Green, J. Chem. Soc. Faraday Trans. 90, 2799 (1994)CrossRefGoogle Scholar
  22. 22.
    D. Kasuya, M. Yudasaka, K. Takahashi, F. Kokai, S. Iijima, J. Phys. Chem. B 106, 4947 (2002)CrossRefGoogle Scholar
  23. 23.
    A.A. Puretzky, D.J. Styers-Barnett, C.M. Rouleau, H. Hu, B. Zhao, I.N. Ivanov, D.B. Geohegan, Appl. Phys. A. (In Press)Google Scholar
  24. 24.
    D. B. Geohegan, A.A. Puretzky, D. Styers-Barnett, H. Hu, B. Zhao, H. Cui, C.M. Rouleau, G. Eres, J.J. Jackson, R.F. Wood, S. Pannala, J.C. Wells, Phys. Stat. Sol. B 244, 3944 (2007)CrossRefADSGoogle Scholar
  25. 25.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee,S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 273(5274), 483 (1996)CrossRefADSGoogle Scholar
  26. 26.
    A.A. Puretzky, D.B. Geohegan, X. Fan, S.J. Pennycook, Appl. Phys. A 70, 153 (2000)CrossRefADSGoogle Scholar
  27. 27.
    A.A. Puretzky, H. Schittenhelm, X. Fan, M.J. Lance, L.F. Allard, D.B. Geohegan, Phys. Rev. B 65, 245425/1 (2002)Google Scholar
  28. 28.
    D.B. Geohegan, A.A. Puretzky, I.N. Ivanov, S. Jesse, G. Eres, J.Y. Howe, Appl. Phys. Lett. 83, 1851 (2003)CrossRefADSGoogle Scholar
  29. 29.
    A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N. Ivanov, G. Eres, Appl. Phys. A 81, 223 (2005)CrossRefADSGoogle Scholar
  30. 30.
    R.F. Wood, S. Pannala, J.C. Wells, A.A. Puretzky, D.B. Geohegan, Phys. Rev. B 75, 235446 (2007)CrossRefADSGoogle Scholar
  31. 31.
    C.M. Rouleau, G. Eres, H. Cui, H.M. Christen, A.A. Puretzky, D.B. Geohegan, Appl. Phys. A (In Press)Google Scholar
  32. 32.
    Z. Liu, D.J. Styers-Barnett, A.A. Puretzky, C.M. Rouleau, D. Yuan, I.N. Ivanov, K. Xiao, J. Liu, D.B. Geohegan, Appl. Phys. A 93, 987 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David B. Geohegan
    • 1
    • 2
  • Alex A. Puretzky
    • 1
    • 2
  • Chris Rouleau
    • 1
    • 2
  • Jeremy Jackson
    • 1
    • 2
  • Gyula Eres
    • 2
  • Zuqin Liu
    • 1
  • David Styers-Barnett
    • 1
  • Hui Hu
    • 2
  • Bin Zhao
    • 1
  • Ilia Ivanov
    • 1
    • 2
  • Kai Xiao
    • 3
  • Karren More
    • 2
  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Materials Sciences and Technology DivisionsOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations