Skip to main content

Towards Systems Metabolic Engineering of PHA Producers

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 14))

Abstract

Polyhydroxyalkanoates (PHAs) are natural polyesters that accumulate in numerous microorganisms as a carbon- and energy-storage material under the nutrient-limiting condition in the presence of an excess carbon source. PHAs are considered to be one of the potential alternatives to petrochemically derived plastics owing to their versatile material properties. Over the past few decades, extensive detailed biochemical, molecular-biological, and metabolic studies related to PHA biosynthesis have been carried out. Advances in our knowledge of PHA biosynthesis led to the development of engineered strains and fermentation processes for the production of PHAs with high efficiency. Even though the traditional metabolic engineering based on our rational thinking and trial-and-error type approaches allowed development of improved strains, further enhancement in the performance is expected through systems metabolic engineering, which is metabolic engineering integrated with systems-biological approaches. In this chapter, the strategies taken for the metabolic engineering of PHA producers are briefly reviewed. Then, genomic and proteomic studies performed to understand the PHA biosynthesis in the context of whole cell metabolism as well as to develop further engineered strains are reviewed. Finally, the strategies for the systems metabolic engineering of PHA producers are suggested; these will make it possible to produce PHAs with higher efficiencies and to develop tailor-made PHAs by systems-level optimization of the metabolic network and establishment of novel pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Mol Biol Rev 54:450–472

    CAS  Google Scholar 

  • Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Boers ME, Blomquist PR, Martinez EJ, Monreal AW, Feibelman TP, Mayorga ME, Maxon ME, Sykes K, Tobin JV, Cordero E, Salama SR, Trueheart J, Royer JC, Madden KT (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21:150–156

    Article  CAS  PubMed  Google Scholar 

  • Blankenhorn D, Philips J, Slonczewski JL (1999) Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216

    CAS  PubMed  Google Scholar 

  • Braunegg G, Bogensberger B (1985) Zur Kinetik des Wachstums und der Speicherung von Poly-D(-)-3-hydroxybuttersaure bei Alcaligenes latus. Acta Biotechnol 5:339–345

    Article  CAS  Google Scholar 

  • Byrom D (1992) Production of poly-β-hydroxybutyrate: poly-β-hydroxyvalerate copolymers. FEMS Microbiol Rev 103:247–250

    CAS  Google Scholar 

  • Choi JI, Lee SY (1999a) Production of poly(3-hydroxybutyrate) with high P(3HB) content by recombinant Escherichia coli harbouring the Alcaligenes latus P(3HB) biosynthesis genes and the Escherichia coli ftsZ gene. J Microbiol Biotechnol 9:722–725

    CAS  Google Scholar 

  • Choi JI, Lee SY (1999b) High-level production of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65:4363–4368

    CAS  PubMed  Google Scholar 

  • Choi JI, Lee SY, Han K (1998) Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli. Appl Environ Microbiol 64:4897–4903

    CAS  PubMed  Google Scholar 

  • Choi JH, Lee SJ, Lee SJ, Lee SY (2003) Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl Environ Microbiol 69:4737–4742

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  Google Scholar 

  • Doi Y, Kunioka M, Nakamura Y, Soga K (1986) Nuclear magnetic resonance studies on poly(β-hydroxybutyrate) and a copolyester of β-hydroxybutyrate and β-hydroxyvalerate isolated from Alcaligenes eutrophus H16. Macromolecules 19:2860–2864

    Article  CAS  Google Scholar 

  • Doi Y, Kawaguchi Y, Koyama N, Nakamura S, Hiramitsu M, Yoshida Y, Kimura U (1992) Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbiol Rev 103:103–108

    Article  CAS  Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  • Fidler S, Dennis D (1992) Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Rev 103:231–236

    Article  CAS  Google Scholar 

  • Fiedler S, Steinbüchel A, Rehm BHA (2000) PhaG-mediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl Environ Microbiol 66:2117–2124

    Article  CAS  PubMed  Google Scholar 

  • Fiedler S, Steinbüchel A, Rehm BHA (2002) The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178:149–160

    Article  CAS  PubMed  Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990) Production of unsaturated polyesters by Pseudomonas oleovorans. Int J Biol Macromol 12:85–91

    Article  CAS  PubMed  Google Scholar 

  • Fukui T, Doi Y (1998) Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180:667–673

    CAS  PubMed  Google Scholar 

  • Fukui T, Abe H, Doi Y (2002) Engineering of Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from fructose and solid-state properties of the copolymer. Biomacromolecules 3:618–624

    Article  CAS  PubMed  Google Scholar 

  • Genser KF, Renner G, Schwab H (1998) Molecular cloning, sequencing and expression in Escherichia coli of the poly(3-hydroxyalkanoate) synthesis genes from Alcaligenes latus DSM1124. J Biotechnol 64:123–135

    Article  CAS  Google Scholar 

  • Green PR, Kemper J, Lee S, Guo L, Satkowski M, Fiedler S, Steinbüchel A, Rehm BHA (2002) Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid oxidation inhibited Ralstonia eutropha. Biomacromolecules 3:208–213

    Article  CAS  PubMed  Google Scholar 

  • Gross RA, DeMello C, Lenz RW, Brandl H, Fuller RC (1989) Biosynthesis and characterization of poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22:1106–1115

    Article  CAS  Google Scholar 

  • Haller T, Buckel T, Retey J, Gerlt JA (2000) Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 39:4622–4629

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Lee SY (2006) The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 70:362–439

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Yoon SS, Lee SY (2001) Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate). J Bacteriol 183:301–308

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Jeong KJ, Yoo JS, Lee SY (2003) Engineering Escherichia coli for increased production of serine-rich proteins based on proteome profiling. Appl Environ Microbiol 69:5772–5781

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Park SJ, Park TJ, Lee SY (2004) Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol Bioeng 88:426–436

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Park SJ, Lee JW, Min BH, Lee SY, Kim SJ, Yoo JS (2006) Analysis of poly(3-hydroxybutyrate) granule-associated proteome in Recombinant Escherichia coli. J Microbiol Biotechnol 16:901–910

    CAS  Google Scholar 

  • Hangii UJ (1990) Pilot scale production of PHB with Alcaligenes latus. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer, Dordrecht, pp 65–70

    Google Scholar 

  • Heinzle E, Lafferty RM (1980) A kinetic model for growth and synthesis of poly-β-hydroxybutyric acid (PHB) in Alcaligenes eutrophus H16. Eur J Appl Microbiol Biotechnol 11:8–16

    Article  CAS  Google Scholar 

  • Hoffmann N, Steinbüchel A, Rehm BHA (2000) Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl Microbiol Biotechnol 54:665–670

    Article  CAS  PubMed  Google Scholar 

  • Hong SH, Park SJ, Moon SY, Park JP, Lee SY (2003) In silico prediction and validation of the importance of Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol Bioeng 83:854–863

    Article  CAS  PubMed  Google Scholar 

  • Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Rev 103:251–256

    CAS  Google Scholar 

  • Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198

    CAS  PubMed  Google Scholar 

  • Ishii N, Robert M, Nakayama Y, Kanai A, Tomita M (2004) Toward large-scale modeling of the microbial cell for computer simulation. J Biotechnol 113:281–294

    Article  CAS  PubMed  Google Scholar 

  • Kabir MM, Shimizu K (2003) Fermentation characteristics and protein expression patterns in a recombinant Escherichia coli mutant lacking phosphoglucose isomerase for poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol 62:244–255

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994a) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994b) Production of poly-(3-hydroxybutyric-co-hydroxyvaleric acid) by fed-batch culture of Alcaligenes eutrophus with substrate feeding using on-line glucose analyzer. Enzyme Microb Technol 16:556–561

    Article  CAS  Google Scholar 

  • Klinke S, Ren Q, Witholt B, Kessler B (1999) Production of medium-chain-length poly(3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli. Appl Environ Microbiol 65:540–548

    CAS  PubMed  Google Scholar 

  • Langenbach S, Rehm BHA, Steinbüchel A (1997) Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309

    Article  CAS  PubMed  Google Scholar 

  • Lawrence AG, Schoenheit J, He A, Tian J, Liu P, Stubbe J, Sinskey AJ (2005) Transcriptional analysis of Ralstonia eutropha genes related to poly-(R)-3-hydroxybutyrate homeostasis during batch fermentation. Appl Microbiol Biotechnol 68:663–672

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Chang HN (1995) Production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli strains: genetic and fermentation studies. Can J Microbiol 41:207–215

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Papoutsakis ET (1999) Metabolic engineering. Dekker, New York

    Google Scholar 

  • Lee SY, Choi JI, Wong HH (1999) Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. Int J Biol Macromol 25:31–36

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Oh DH, Ahn WS, Lee Y, Choi J, Lee SY (2000) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high cell density cultivation of Aeromonas hydrophila. Biotechnol Bioeng 67:240–244

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee DE, Lee BU, Kim HS (2003) Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J Bacteriol 185:5442–5451

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:1–8

    Article  CAS  Google Scholar 

  • Lim SJ, Jung YM, Shin HD, Lee YH (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB Operon. J Biosci Bioeng 93:543–549

    CAS  PubMed  Google Scholar 

  • Liu W, Chen GQ (2007) Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Appl Microbiol Biotechnol 76:1153–1159

    Article  CAS  PubMed  Google Scholar 

  • Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K (2005) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27:1405–1410

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GS (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  Google Scholar 

  • McInerney MJ, Amos DA, Kealy KS, Palmer J (1992) Synthesis and function of polyhydroxyalkanoates in anaerobic syntrophic bacteria. FEMS Microbiol Rev 103:195–206

    Article  CAS  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  • Nomura CT, Taguchi K, Taguchi S, Doi Y (2004) Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl Environ Microbiol 70:999–1007

    Article  CAS  PubMed  Google Scholar 

  • O’Leary ND, O’Connor KE, Duetz W, Dobson ADW (2001) Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147:973–979

    PubMed  Google Scholar 

  • O’Leary ND, O’Connor KE, Ward P, Goff M, Dobson ADW (2005) Genetic characterisation of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. Appl Environ Microbiol 71:4380–4387

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75

    Article  CAS  PubMed  Google Scholar 

  • Ouyang SP, Luo RC, Chen SS, Liu Q, Chung A, Wu Q, Chen GQ (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8:2504–2511

    Article  CAS  PubMed  Google Scholar 

  • Palmeros B, Wild J, Szybalski W, Le Borgne S, Hernández-Chávez G, Gosset G, Valle F, Bolivar F (2000) A family of removable cassettes designed to obtain antibiotic-resistance-free genomic modifications of Escherichia coli and other bacteria. Gene 247:255–264

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lee SY (2003) Identification and characterization of a new enoyl coenzyme a hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol 185:5391–5397

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lee SY (2004) New fadB homologous enzymes and their use in enhanced biosynthesis of medium-chain-length polyhydroxyalkanoates in fadb mutant Escherichia coli. Biotechnol Bioeng 86:682–686

    Google Scholar 

  • Park SJ, Lee SY (2005) Systems biological approach for the production of various polyhydroxyalkanoates by metabolically engineered Escherichia coli. Macromol Symp 224:1–9

    Article  CAS  Google Scholar 

  • Park SJ, Park JP, Lee SY (2002) Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers. FEMS Microbiol Lett 214:217–222

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Park JP, Lee SY, Doi Y (2003) Enrichment of specific monomer in medium-chain-length poly(3-hydroxyalkanoates) by amplification of fadD and fadE genes in recombinant Escherichia coli. Enzyme Microb Technol 33:62–70

    Article  CAS  Google Scholar 

  • Park SJ, Choi JI, Lee SY (2004) Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzyme Microb Technol 36:579–588

    Article  CAS  Google Scholar 

  • Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lee SY, Kim TY, Kim HU (2008) Application of systems biology for bioprocess development. Trends Biotechnol 26:404–412

    Article  CAS  PubMed  Google Scholar 

  • Peoples OP, Sinskey AJ (1989) Poly-β-hydroxybutyrate bio-synthesis in Alcaligenes eutrophus H16. Identification and characterization of the P(3HB) polymerase gene (phbC). J Biol Chem 264:15298–15303

    CAS  PubMed  Google Scholar 

  • Pieper U, Steinbüchel A (1992) Identification, cloning and molecular characterization of the poly(3-hydroxyalkanoic acid) synthase structural gene of the Gram-positive Rhodococcus ruber. FEMS Microbiol Lett 96:73–80

    Article  CAS  Google Scholar 

  • Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    Article  PubMed  Google Scholar 

  • Potter M, Madkour MH, Mayer F, Steinbüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148:2413–2426

    CAS  PubMed  Google Scholar 

  • Raberg M, Reinecke F, Reichelt F, Malkus U, Konig S, Potter M, Fricke WF, Pohlmann A, Voigt B, Hecker M, Friedrich B, Bowien B, Steinbüchel A (2008) Ralstonia eutropha H16 flagellation changes according to nutrient supply and state of poly(3-hydroxybutyrate) accumulation. Appl Environ Microbiol 74:4477–4490

    Article  CAS  PubMed  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed  Google Scholar 

  • Rehm BHA, Kruger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis: the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem 273:24044–24051

    Article  CAS  PubMed  Google Scholar 

  • Rehm BHA, Mitsky TA, Steinbüchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by Pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Sierro N, Witholt B, Kessler B (2000) FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J Bacteriol 182:2978–2981

    Article  CAS  PubMed  Google Scholar 

  • Repaske R, Mayer R (1976) Dense autotrophic culture of Alcaligenes eutrophus. Appl Environ Microbiol 32:592–597

    CAS  PubMed  Google Scholar 

  • Rückert C, Pühler A, Kalinowski J (2003) Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J Biotechnol 104:213–228

    Article  PubMed  CAS  Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus poly-β-hydroxybutyrate synthetic pathway and synthesis of P(3HB) in Escherichia coli. J Bacteriol 170:5837–5847

    CAS  PubMed  Google Scholar 

  • Slater S, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436

    CAS  PubMed  Google Scholar 

  • Slater S, Gallaher T, Dennis D (1992) Production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) in a recombinant Escherichia coli strain. Appl Environ Microbiol 58:1089–1094

    CAS  PubMed  Google Scholar 

  • Snell KD, Feng F, Zhong L, Martin D, Madison LL (2002) Yfcx enables medium-chain-length poly(3-hydroxyalkanoate) formation from fatty acids in recombinant Escherichia coli fadB strains. J Bacteriol 184:5696–5705

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Google Scholar 

  • Stephanopoulos G (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Aoyagi Y, Matsusaki H, Fukui T, Doi Y (1999) Over-expression of 3-ketoacyl-ACP synthase III or malonyl-CoA-ACP transacylase gene induces monomer supply for the polyhydroxybutyrate production in Escherichia coli HB101. Biotechnol Lett 21:579–584

    Article  CAS  Google Scholar 

  • Timm A, Steinbüchel A (1992) Cloning and molecular analysis of the polyhydroxyalkanoic acid gene locus of Pseudomonas aeruginosa PAOl. Eur J Biochem 209:15–30

    Article  CAS  PubMed  Google Scholar 

  • Timm A, Wiese S, Steinbüchel A (1994) A general method for identification of polyhydroxyalkanoic acid synthase genes from Pseudomonads belonging to the rRNA homology group I. Appl Microbiol Biotechnol 40:669–675

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizaki A, Doi Y (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol Lett 184:193–198

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Saito Y, Kikkawa Y, Hiraishi T, Doi Y (2004) Biosynthesis and compositional regulation of poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)] in recombinant Ralstonia eutropha expressing mutated polyhydroxyalkanoate synthase genes. Macromol Biosci 4:238–242

    Article  CAS  PubMed  Google Scholar 

  • Tummala SB, Junne SG, Paredes CJ, Papoutsakis ET (2003) Transcriptional analysis of product-concentration driven changes in cellular programs of recombinant Clostridium acetobutylicum strains. Biotechnol Bioeng 84:842–854

    Article  CAS  PubMed  Google Scholar 

  • Ward PG, O’Connor KE (2005) Induction and quantification of phenylacyl-CoA ligase enzyme activities in Pseudomonas putida CA-3 grown on aromatic carboxylic acids. FEMS Microbiol Lett 251:227–232

    Article  CAS  PubMed  Google Scholar 

  • Wiechert W (2002) Modeling and simulation: tools for metabolic engineering. J Biotechnol 94:37–63

    Article  CAS  PubMed  Google Scholar 

  • Witholt B, Kessler B (1999) Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10:279–285

    Article  CAS  PubMed  Google Scholar 

  • Wittmann C, Heinzle E (2001) Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab Eng 3:173–191

    Article  CAS  PubMed  Google Scholar 

  • Wong MS, Causey TB, Mantzaris N, Bennett GN, San KY (2007) Engineering poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer composition in E. coli. Biotechnol Bioeng 99:919–928

    Article  CAS  Google Scholar 

  • Yamane T, Fukunaga M, Lee YW (1996) Increased PHB productivity by high-cell-density fed-batch culture of Alcaligenes latus, a growth-associated PHB producer. Biotechnol Bioeng 50:197–202

    Article  CAS  PubMed  Google Scholar 

  • Yim KS, Lee SY, Chang HN (1996) Synthesis of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) by recombinant Escherichia coli. Biotechnol Bioeng 49:495–503

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS (2003) Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 8:753–767

    Article  CAS  Google Scholar 

  • York GM, Junker BH, Stubbe J, Sinskey AJ (2001) Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol 183:4217–4226

    Article  CAS  PubMed  Google Scholar 

  • York GM, Stubbe J, Sinskey AJ (2002) The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 184:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yuan LZ, Rouviere PE, Larossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work described in this paper was supported by the Korean Systems Biology Research Project (M10309020000–03B5002–00000) of the Ministry of Education, Science and Technology. Further support by the LG Chem Chair Professorship and Microsoft is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yup Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jung, Y.K., Lee, S.Y., Tam, T.T. (2010). Towards Systems Metabolic Engineering of PHA Producers. In: Chen, GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03287-5_4

Download citation

Publish with us

Policies and ethics