Skip to main content

Microbial cis-3,5-Cyclohexadiene-1,2-diol, Its Polymer Poly(p-phenylene), and Applications

  • Chapter
  • First Online:
Plastics from Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 14))

  • 4174 Accesses

Abstract

This chapter describes the production of cis-3,5-cyclohexadiene-1,2-diol (DHCD) from aromatic compounds, their polymerization into poly(p-phenyelene) (or PPP), and the properties and applications of the polymer. Large-scale synthesis of DHCD has been demonstrated, and DHCD is widely used in the pharmaceutical industry, as well as in chemical industries for polymer productions. Recent study including different types of dioxygenases, strain development by recombination, and genetical modification were done to develop the process technology for commercialization of this new polymer and chemical intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnautov SA, Kobryanskii VM (2000) Study of new modifications of poly(p-phenylene) synthesis via oxidative polycondensation. Macromol Chem Phys 201:809–814

    Article  CAS  Google Scholar 

  • Axcell BC, Geary PJ (1975) Purification and properties of a soluble benzene-oxidizing system from a strain of Pseudomonas. Biochem J 146:173–183

    CAS  PubMed  Google Scholar 

  • Axell BC, Geary PJ (1973) Metabolism of benzene by bacteria. Purification and properties of the enzyme cis-1,2-dihydroxy-3,5-cyclohexadiene (nicotinamide adenine dinucleotide) oxidoreductase (cis-benzene glycol dehydrogenase). Biochem J 136:927–934

    CAS  Google Scholar 

  • Bagneris C, Cammack R, Mason JR (2005) Subtle differences between benzene and toluene dioxygenases of Pseudomonas putida. Appl Environ Microbiol 71:1570–1580

    Article  CAS  PubMed  Google Scholar 

  • Ballard DGH, Courtis A, Shirley IM (1983) Ring-containing polymers and their blends. EP 76605

    Google Scholar 

  • Ballard DGH, Courtis A, Shirley IM, Taylor SC (1983b) A biotech route to polyphenylene. J Chem Soc Chem Commun 17:954–955

    Article  Google Scholar 

  • Ballard DGH, Moran KT, Shirley IM (1984) Conducting polymers. EP 122079

    Google Scholar 

  • Ballard DGH, Courtis A, Shirley IM, Taylor SC (1988) Synthesis of polyphenylene from a cis-dihydrocatechol biologically produced monomer. Macromolecules 21:294–304

    Article  CAS  Google Scholar 

  • Ballard DGH, Blacker AJ, Woodley JM, Taylor SC (1994) Polyphenylenes from biosynthetic cis-dihydroxycyclohexadiene. In: Mobley DP (ed) Plastics from microbes: microbial synthesis of polymers and polymer precursors. Hanser, New York, pp 139–168

    Google Scholar 

  • Berresheim AJ, Muller M, Klaus M (1999) Polyphenylene nanostructures. Chem Rev 99:1747–1785

    Article  CAS  PubMed  Google Scholar 

  • Boyd DR, Bugg TDH (2006) Arene cis-dihydrodiol formation: from biology to application. Org Biomol Chem 4:181–192

    Article  CAS  PubMed  Google Scholar 

  • Brown CE, Kovacic P, Wilkie CA, Kinsinger JA, Hein RE, Yaninger SI, Cody RB (1986) Polynuclear and halogenated structures in polyphenylenes synthesized from benzene, biphenyl, and p-terphenyl under various conditions: characterization by laser desorption/Fourier transform mass spectrometry. J Polym Sci 24:255–267

    CAS  Google Scholar 

  • Bui V, Hansen TV, Stenstrom Y (2000) Toluene dioxygenase-mediated oxidation of aromatic substrates with remote chiral centers. J Chem Soc Perkin Trans 1 11:1669–1672

    Article  Google Scholar 

  • Burroughes JH, Bradley DDC, Brown AR, Marks RN, MacKay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  CAS  Google Scholar 

  • Busch M, Webber W, Darboven C, Renner W, Hahn HJ, Mathauser G, Stärtz F, Zitzmann K, Engelhardt H (1936) Formation of carbon chains in the catalytic reduction of alkyl halogen compounds. J Prakt Chem 146:1–55

    Article  CAS  Google Scholar 

  • Butler CS, Mason JR (1997) Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 38:47–84

    Article  CAS  PubMed  Google Scholar 

  • Cassidy PE, Marvel CS, Ray SJ (1965) Preparation and aromatization of poly-1,3-cyclohexadiene and subsequent cross-linking. III. J Polym Sci A3:1553–1564

    Google Scholar 

  • Cavalca L, Amico ED, Andreoni V (2004) Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Appl Microbiol Biotechnol 64:576–587

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Zhang G, Park SJ, Lee SY (2001) Industrial production of poly(hydroxybutyrate-co-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–55

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Liu T, Zheng Z, Chen JC, Chen GQ (2004) Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 has different substrate specificities. FEMS Microbiol Lett 234:231–237

    Article  CAS  PubMed  Google Scholar 

  • Chenshire P (1984) Polyarylenes by amine-catalyzed elimination of carbonate groups from polymers. EP 107895

    Google Scholar 

  • Collins AM, Woodley JM (1993) In: IChemE research event. Institute of Chemical Engineers, Rugby, p 179

    Google Scholar 

  • Costura RK, Alvarez PJJ (2000) Expression and longevity of toluene dioxygenase in Pseudomonas putida F1 induced at different dissolved oxygen concentrations. Water Res 34:3014–3018

    Article  CAS  Google Scholar 

  • de Bont JAM, Vorage MJAW, Hartmans S, van den Tweel WJJ (1986) Microbial degradation of 1,3-dichlorobenzene. Appl Environ Microbiol 52:677–680

    PubMed  Google Scholar 

  • Doelle HW (1975) Bacterial metabolism. Academic, London

    Google Scholar 

  • Dordick JS (1992a) In: Ladisch MR, Bose A (eds) Harnessing biotechnology for the 21st century. American Chemical Society, Washington, p 164

    Google Scholar 

  • Dordick JS (1992b) Enzymic and chemoenzymic approaches to polymer synthesis. Trends Technol 10:287–293

    Article  CAS  PubMed  Google Scholar 

  • Ensley BD, Gibson DT (1983) Naphthalene dioxygenase: purification and properties of a terminal oxygenase component. J Bacteriol 155:505–511

    CAS  PubMed  Google Scholar 

  • Friemann R, Ivkovic-Jensen MM, Lessner DJ, Yu CL, Gibson DT, Parales RE, Eklund H, Ramaswamy S (2005) Structural insight into the dioxygenation of nitroarene compounds: the crystal structure of nitrobenzene dioxygenase. J Mol Biol 348:1139–1151

    Article  CAS  PubMed  Google Scholar 

  • Geary PJ, Saboowalla F, Patil D, Cammack R (1984) An investigation of the iron-sulphur proteins of benzene dioxygenase from Pseudomonas putida by electron-spin-resonance spectroscopy. Biochem J 217:667–673

    CAS  PubMed  Google Scholar 

  • Gibson DT (1990) ACS symposium series 200. American Chemical Society, Washington, p 98

    Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT, Koch JR, Kallio RE (1968a) Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymic formation of catechol from benzene. Biochemistry 7:2653–2662

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT, Koch JR, Kallio RE (1968b) Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry 7:3795–3802

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT, Cardini GE, Maseles FC (1970) Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochemistry 9:1631–1635

    Article  CAS  PubMed  Google Scholar 

  • Gin DL, Conticello VP, Grubbs RH (1991) Transition metal catalyzed polymerization of heteroatom-substituted cyclohexadienes: precursors to poly(paraphenylene). Polym Prepr 32(3):236–237

    CAS  Google Scholar 

  • Gin DL, Conticello VP, Grubbs RH (1992a) Transition-metal-catalyzed polymerization of heteroatom-functionalized cyclohexadienes: stereoregular precursors to poly(p-phenylene). J Am Chem Soc 114:3167–3169

    Article  CAS  Google Scholar 

  • Gin DL, Conticello VP, Grubbs RH (1992b) A new route to poly(para-phenylene): stereoregular precursors via transition metal-catalyzed polymerization. Polym Mater Sci Eng 67:87–89

    CAS  Google Scholar 

  • Gin DL, Conticello VP, Grubbs RH (1994a) Stereoregular precursors to poly(p-phenylene) via transition-metal-catalyzed polymerization. 1. Precursor design and synthesis. J Am Chem Soc 116:10507–10519

    Article  CAS  Google Scholar 

  • Gin DL, Conticello VP, Grubbs RH (1994b) Stereoregular precursors to poly(p-phenylene) via transition-metal-catalyzed polymerization. 2. The effects of polymer stereochemistry and acid catalysts on precursor aromatization: a characterization study. J Am Chem Soc 116:10934–10947

    Article  CAS  Google Scholar 

  • Goldschmiedt G (1886) Monatsh Chem 7:40

    Article  Google Scholar 

  • Grem G, Leditzk G, Ullrich B, Leising G (1992) Realization of a blue-light emitting device using poly (p-phenylene). Adv Mater 4:36–37

    Article  CAS  Google Scholar 

  • Güuzel B, Barke CH, Ernst S, Weitkamp J, Deckwer WD (1990) Adsorption of diols from fermentation media on hydrophobic zeolites. Chem Ing Tech 62:748–750

    Article  Google Scholar 

  • Hack CJ, Woodley JM, Lilly MD, Liddell JM (1994) The production of Pseudomonas putida for the hydroxylation of toluene to its cis-glycol. Appl Microbiol Biotechnol 41:495–499

    Article  CAS  Google Scholar 

  • Harpel MR, Lipscomb JD (1990) Gentisate 1,2-dioxygenase from Pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans. J Biol Chem 265:6301–6311

    CAS  PubMed  Google Scholar 

  • Harrop AJ, Woodley JM, Lilly MD (1992) Production of naphthalene-cis-glycol by Pseudomonas putida in the presence of organic solvents. Enzyme Microb Technol 14:725–730

    Article  CAS  Google Scholar 

  • Herbert AB, Sheldrake GN, Somers PJ, Meredith JA (1990) Separation of 1,2-dihydroxycyclohexa-3,5-diene compounds by precipitation as phenylboronate esters. EP 379300

    Google Scholar 

  • Jiménez JI, Minambres B, García JL, Díaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841

    Article  PubMed  Google Scholar 

  • Kim SY, Jung J, Lim Y, Ahn JH, Kim SI, Hur HG (2003) cis-2′,3′-Dihydrodiol production on flavone B-ring by biphenyl dioxygenase from Pseudomonas pseudoalcaligenes KF707 expressed in Escherichia coli. Antonie Van Leeuwenhoek 84:261–268

    Article  CAS  PubMed  Google Scholar 

  • Kovacic P, Jones MB (1987) Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chem Rev 87:357–379

    Article  CAS  Google Scholar 

  • Kovacic P, Kyriakis A (1962) Polymerization of benzene to p-polyphenyl. Tetrahedron Lett 11:467–469

    Article  Google Scholar 

  • Kovacic P, Kyriakis A (1963) Polymerization of aromatic nuclei. II. Polymerization of benzene to p-polyphenyl by aluminum chloride-cupric chloride. J Am Chem Soc 85:454–458

    Article  CAS  Google Scholar 

  • Kovacic P, Oziomek J (1964) p-Polyphenyl from benzene-Lewis acid catalyst-oxidant. Reaction scope and investigation of the benzene-aluminum chloride-cupric chloride system. J Org Chem 29:100–104

    Article  CAS  Google Scholar 

  • Lilly MD (1977) In: Bohak Z, Sharon N (eds) Biotechnological applications of proteins and enzymes. Academic, London, p 127

    Google Scholar 

  • Lilly MD, Dervakos GA, Woodley JM (1990) In: Copping LB, Martin RE, Pickett JA, Bucke C, Bunch AW (eds) Opportunities in biotransformations. Elsevier, London

    Google Scholar 

  • Lipscomb JD, Wolfe MD, Altier DJ, Stubna A, Popescu CV, Münck E (2002) Benzoate 1,2-dioxygenase from Pseudomonas putida: single turnover kinetics and regulation of a two-component Rieske dioxygenase. Biochemistry 41:9611–9626

    Article  PubMed  Google Scholar 

  • Marvel CS, Hartzell GE (1959) Preparation and aromatization of poly-1,3-cyclohexadiene. J Am Chem Soc 81:448–452

    Article  CAS  Google Scholar 

  • Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305

    Article  CAS  PubMed  Google Scholar 

  • Natori I, Natori S, Sato H (2006) Synthesis of soluble polyphenylene homopolymers as polar macromolecules: complete dehydrogenation of poly(1,3-cyclohexadiene) with controlled polymer chain structure. Macromolecules 39:3168–3174

    Article  CAS  Google Scholar 

  • Nevin A, Shirley IM (1985) Polymer coatings. EP 163392

    Google Scholar 

  • Nozaki M, Kagamiyama H, Hayaishi O (1963) Crystallization and some properties of metapyrocatechase. Biochem Biophys Res Commun 11:65–70

    Article  CAS  PubMed  Google Scholar 

  • Ouyang SP, Han J, Qiu YZ, Qin LF, Chen S, Wu Q, Leski ML, Chen GQ (2005) Poly­(3-hydroxybutyrate-co-3-hydroxyhexanoate) production in recombinant Aeromonas hydrophila 4AK4 harboring phbA, phbB and vgb genes. Macromol Symp 224:21–34

    Article  CAS  Google Scholar 

  • Ouyang SP, Sun SY, Liu Q, Chen JC, Chen GQ (2007a) Microbial transformation of benzene to cis-3,5-cyclohexa-1,2-diols by recombinant bacteria harboring toluene dioxygenase gene tod. Appl Microbiol Biotechnol 74:43–49

    Article  CAS  PubMed  Google Scholar 

  • Ouyang SP, Liu Q, Sun SY, Chen JC, Chen GQ (2007b) Genetic engineering of Pseudomonas putida KT2442 for biotransformation of aromatic compounds to chiral cis-diols. J Biotechnol 132:246–250

    Article  CAS  PubMed  Google Scholar 

  • Parales RE, Haddock JD (2004) Biocatalytic degradation of pollutants. Curr Opin Biotechnol 15:374–379

    Article  CAS  PubMed  Google Scholar 

  • Qu XH, Chen JC, Ma QX, Sun SY, Chen GQ (2003) Biotransformation of benzene to cis-1,2-dihydroxycyclohexa-3,5-diene using recombinant Escherichia coli JM109 (pKST11). Sheng Wu Gong Cheng Xue Bao 19:74–80

    CAS  PubMed  Google Scholar 

  • Quintana MG, Dalton H (1999) Biotransformation of aromatic compounds by immobilized bacterial strains in barium alginate beads. Enzyme Microb Technol 24:232–236

    Article  CAS  Google Scholar 

  • Raschke H, Meier M, Burken JG, Hany R, Muller MD, Van Der Meer JR, Kohler HPE (2001) Biotransformation of various substituted aromatic compounds to chiral dihydrodihydroxy derivatives. Appl Environ Microbiol 67:3333–3339

    Article  CAS  PubMed  Google Scholar 

  • Reddy J, Lee C, Neeper M, Greasham R, Zhang J (1999) Development of a bioconversion process for production of cis-1S,2R-indandiol from indene by recombinant Escherichia coli constructs. Appl Microbiol Biotechnol 51:614–620

    Article  CAS  PubMed  Google Scholar 

  • Reiner AM, Hegeman GD (1971) Metabolism of benzoic acid by bacteria. Accumulation of (-)-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid by a mutant strain of Alcaligenes eutrophus. Biochemistry 10:2530–2536

    Article  CAS  PubMed  Google Scholar 

  • Shindo K, Nakamura R, Osawa A, Kagami O, Kanoh K, Furukawa K, Misawa N (2005) Biocatalytic synthesis of monocyclic arene-dihydrodiols and -diols by Escherichia coli cells expressing hybrid toluene/biphenyl dioxygenase and dihydrodiol dehydrogenase genes. J Mol Catal B Enzym 35:134–141

    Article  CAS  Google Scholar 

  • Speight JG, Kovacic P, Koch FW (1971) Synthesis and properties of polyphenyls and polyphenylenes. Macromol Rev 5:295–386

    CAS  Google Scholar 

  • Stanier RY, Ornston LN (1973) β-Ketoadipate pathway. Adv Microb Physiol 9:89–151

    Article  CAS  PubMed  Google Scholar 

  • Subramanian V, Liu TN, Yeh WK, Gibson DT (1979) Toluene dioxygenase: purification of an iron-sulfur protein by affinity chromatography. Biochem Biophys Res Commun 91:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Subramanian V, Liu TN, Yeh WK, Serdar CM, Wackett LP, Gibson DT (1985) Purification and properties of ferredoxinTOL: a component of toluene dioxygenase from Pseudomonas putida F1. J Biol Chem 260:2355–2363

    CAS  PubMed  Google Scholar 

  • Suda K, Akagi K (2008) Electro-optical behavior of ferroelectric liquid crystalline polyphenylene derivatives. J Polym Sci A Polym Chem 46:3591–3610

    Article  CAS  Google Scholar 

  • Sun HY, Chen HX, Zheng MS (2005) Synthesis, properties and applications of the polyphenylene. Hua Xue Tong Bao 7:515–521

    Google Scholar 

  • Sun SY, Zhang X, Zhou Q, Chen JC, Chen GQ (2008) Microbial production of cis-1,2-dihydroxy-cyclohexa-3,5-diene-1-carboxylate by genetically modified Pseudomonas putida. Appl Microbiol Biotechnol 80:977–984

    Article  CAS  PubMed  Google Scholar 

  • Taylor SC (1982) Biochemical preparation of 1,2-dihydroxycyclohexadienes. EP 76606

    Google Scholar 

  • van den Tweel WJJ, Vorage MJAW, Marsman EH, Koppejan T, Tramper J, de Bont JAM (1986) Enzyme Microb Technol 10:134

    Google Scholar 

  • van den Tweel WJJ, Marsman EH, Vorage MJAW, Tramper J, de Bont JAM (1987) In: Moody GW, Baker PB (eds) Bioreactors and biotransformations. Elsevier, London, p 231

    Google Scholar 

  • Wahbi LP, Gokhale D, Minter S, Stephens GM (1996) Construction and use of recombinant Escherichia coli strains for synthesis of toluene cis-glycol. Enzyme Microb Technol 19:297–306

    Article  CAS  PubMed  Google Scholar 

  • Wahbi LP, Phumathonl P, Brown A, Minter S, Stephens GM (1997) Regulated toluene cis-glycol production by recombinant Escherichia coli strains constructed by PCR amplification of the toluenedioxygenase genes from Pseudomonas putida. Biotechnol Lett 19:961–965

    Article  CAS  Google Scholar 

  • Woodley JM, Brazier AJ, Lilly MD (1991) Lewis cell studies to determine reactor design data for two-liquid-phase bacterial and enzymic reactions. Biotechnol Bioeng 37:133–140

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Fujisawa H (1978) Characterization of NADH-cytochrome c reductase, a component of benzoate 1,2-dioxygenase system from Pseudomonas arvilla c-1. J Biol Chem 253:8848–8853

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Fujisawa H (1980) Purification and characterization of an oxygenase component in benzoate 1,2-dioxygenase system from Pseudomonas arvilla c-1. J Biol Chem 255(11):5058–5063

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Fujisawa H (1982) Subunit structure of oxygenase component in benzoate 1,2-dioxygenase system from Pseudomonas arvilla c-1. J Biol Chem 257(21):12497–12502

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Yamauchi T, Fujisawa H (1975) Studies on mechanism of double hydroxylation I. Evidence for participation of NADH-cytochrome reductase in the reaction of benzoate 1,2-dioxygenase (benzoate hydroxylase). Biochem Biophys Res Commun 67:264–271

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Hayashi Y, Yamamoto Y (1978) A novel type of polycondensation utilizing transition metal-catalyzed C-C coupling. I. Preparation of thermostable polyphenylene type polymers. Bull Chem Soc Jpn 51:2091–2097

    Article  CAS  Google Scholar 

  • Yarmoff JJ, Kawakami Y, Yago T, Maruo H, Nishimura H (1988) cis-Benzeneglycol production using a mutant Pseudomonas strain. J Ferment Technol 66:305–312

    Article  CAS  Google Scholar 

  • Yeh WK, Gibson DT, Liu T (1977) Toluene dioxygenase: a multicomponent enzyme system. Biochem Biophys Res Commun 78:401–410

    Article  CAS  PubMed  Google Scholar 

  • Yildirim S, Franco TT, Wohlgernuth R, Kohler HPE, Witholt B, Schmid A (2005) Recombinant chlorobenzene dioxygenase from Pseudomonas sp. P51: a biocatalyst for regioselective oxidation of aromatic nitriles. Adv Synth Catal 347:1060–1072

    Article  CAS  Google Scholar 

  • Zamanian K, Mason JR (1987) Benzene dioxygenase in Pseudomonas putida. Subunit composition and immuno-cross-reactivity with other aromatic dioxygenases. Biochem J 244:611–616

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, GQ. (2010). Microbial cis-3,5-Cyclohexadiene-1,2-diol, Its Polymer Poly(p-phenylene), and Applications. In: Chen, GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03287-5_17

Download citation

Publish with us

Policies and ethics