Skip to main content

Manufacturing of PHA as Fibers

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 14))

Abstract

Poly[(R)-3-hydroxybutyrate] and its copolymers have not been recognized as practical because of its stiffness and brittleness. Recently, we succeeded in obtaining strong fibers by two kinds of new drawing techniques from microbial polyesters produced by both wild-type and recombinant bacteria. The improvement of the mechanical properties of fibers is due not only to the orientation of the molecular chains but is also due to the generation of a planar zigzag conformation. The highly ordered and inner structures of strong fibers with tensile strength of over 1.0 GPa were analyzed by microbeam X-ray diffraction and X-ray microtomography with synchrotron radiation, respectively. The enzymatic degradation of strong fibers was investigated by using an extracellular polyhydroxybutyrate depolymerase. Furthermore, nanofibers were prepared by an electrospining technique from dilute solution and subcutaneous implantation of electrospun nanofibers was performed to investigate their bioabsorption behavior and tissue response. In this chapter, we present the processing, mechanical properties, molecular and highly ordered structure, enzymatic degradation, and bioabsorption of strong fibers and nanofibers produced from microbial polyesters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

HFIP:

1,1,1,3,3,3-Hexafluoro-2-propanol

P(3HB):

Poly[(R)-3-hydroxybutyrate]

P(3HB-co-4HB):

Poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate]

P(3HB-co-3HH):

Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate]

P(3HB-co-3HV):

Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate]

P(4HB):

Poly[(R)-4-hydroxybutyrate]poly(4-hydroxybutyrate)

PHA:

Polyhydroxyalkanoate

SAXS:

Small-angle X-ray scattering

UHMW-P(3HB):

Ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate]

WAXD:

Wide-angle X-ray diffraction

References

  • Alper R, Lundgren DG, Marchessault RH, Côté WA (1963) Properties of poly-β-hydroxybutyrate. I. General considerations concerning the naturally occurring polymer. Biopolymers 1:545–556

    Article  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence; metabolic role; and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  Google Scholar 

  • Aoyagi Y, Doi Y, Iwata T (2003) Mechanical properties and highly ordered structure of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] films: effects of annealing and two-step drawing. Polym Degrad Stab 79:209–216

    Article  CAS  Google Scholar 

  • Barham PJ, Keller A (1986) The relationship between microstructure and mode of fracture in polyhydroxybutyrate. J Polym Sci Polym Phys Ed 24:69–77

    Article  CAS  Google Scholar 

  • Bond EB (2003) Fiber spinning behavior of a 3-hydorxybutyrate/3-hydroxyhexanoate copolymer. Macromol Symp 197:19–31

    Article  CAS  Google Scholar 

  • De Koning GJM, Lemstra PJ (1993) Crystallization phenomena in bacteria poly[(R)-3-hydroxybutyrate]: 2. Embrittlement and rejuvenation. Polymer 34:4089–4094

    Article  Google Scholar 

  • De Koning GJM, Lemstra PJ (1994) Crystallization phenomena in bacteria poly[(R)-3-hydroxybutyrate]: 3. Toughening via texture changes. Polymer 35:4598–4605

    Article  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  • Furuhashi Y, Imamura Y, Jikihara Y, Yamane H (2004) Higher order structures and mechanical properties of bacterial homo poly(3-hydroxybutyrate) fibers prepared by cold-drawing and annealing processes. Polymer 45:5703–5712

    Article  CAS  Google Scholar 

  • Gordeyev SA, Nekrasov YPJ (1999) Processing and mechanical properties of oriented poly(beta-hydroxybutyrate) fibers. Mater Sci Lett 18:1691–1692

    Article  CAS  Google Scholar 

  • Hisano T, Kasuya K, Tezuka Y, Ishii N, Kobayashi T, Shiraki M, Oroudjev M, Hansma H, Iwata T, Doi Y, Saito T, Miki K (2006) The crystal structure of polyhydroxybutyrate depolymerase from Penicillium funiculosum provides insights into the recognition and degradation of biopolyesters. J Mol Biol 356:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Holmes PA (1988) Biologically produced (R)-3-hydroxyalkanoate polymers and copolymers. In: Bassett DC (ed) Developments in crystalline polymers – 2. Elsevier, London, pp 1–65

    Google Scholar 

  • Ishii D, Lee WK, Kasuya K, Iwata T (2007) Fine structure and enzymatic degradation of poly[(R)-3-hydroxybutyrate] and stereocomplexed poly(lactide) nanofibers. J Biotechnol 132:318–324

    Article  CAS  PubMed  Google Scholar 

  • Iwata T (2005) Strong fibers and films of microbial polyesters. Macromol Biosci 5(8):689–701

    Article  CAS  PubMed  Google Scholar 

  • Iwata T, Tsunoda K, Aoyagi Y, Kusaka S, Yonezawa N, Doi Y (2003) Mechanical properties of uniaxially cold-drawn films of poly([R]-3-hydroxybutyrate). Polym Degrad Stab 79:217–224

    Article  CAS  Google Scholar 

  • Iwata T, Aoyagi Y, Fujita M, Yamane H, Doi Y, Suzuki Y, Takeuchi A, Uesugi K (2004) Processing of a strong biodegradable poly[(R)-3-hydroxybutyrate] fiber and a new fiber structure revealed by micro-beam X-ray diffraction with synchrotron radiation. Macromol Rapid Commun 25:1100–1104

    Article  CAS  Google Scholar 

  • Iwata T, Fujita M, Aoyagi Y, Doi Y, Fujisawa T (2005) Time-resolved X-ray diffraction study on poly[(R)-3-hydroxybutyrate] films during two-step-drawing: generation mechanism of planar zigzag structure. Biomacromolecules 6:1803–1809

    Article  CAS  PubMed  Google Scholar 

  • Iwata T, Aoyagi Y, Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K (2006) Microbeam X-ray diffraction and enzymatic degradation of poly[(R)-3-hydroxybutyrate] fibers with two kinds of molecular conformations. Macromolecules 39:5789–5795

    Article  Google Scholar 

  • Iwata T; Sato S; Park JW; Tanaka T (2008) Beta structure and unique crystalline orientation analysis of PHB fibers and films. In: Abstract of international symposium on biological polyesters 2008, New Zealand, November 2008, p 101

    Google Scholar 

  • Jikihara Y, Saito T, Yamane H (2006) Effect of thermal history on the crystallization behavior of bacterial poly(3-hydroxybutyrate-co-hydroxyhexanoate) and the cold drawability of melt spun fibers. Sen’i Gakkaishi 62:115–122

    Article  CAS  Google Scholar 

  • Kim J, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Compos 20:124–131

    Article  CAS  Google Scholar 

  • Kusaka S, Iwata T, Doi Y (1998) Microbial synthesis and physical properties of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate]. J Macromol Sci-Pure Appl Chem A35:319–335

    Article  CAS  Google Scholar 

  • Kusaka S, Iwata T, Doi Y (1999) Properties and biodegradability of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] produced by a recombinant Escherichia coli. Int J Biol Macromol 25:87–94

    Article  CAS  PubMed  Google Scholar 

  • Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 16:97–105

    Article  CAS  Google Scholar 

  • Martin DP, Skraly FA, Williams SF (1999) Polyhydroxyalkanoate compositions having controlled degradation rats. PCT Patent Appl WO 99/32536

    Google Scholar 

  • Morota K, Matsumoto K, Mizukoshi T, Konosu Y, Minagawa M, Tanioka A, Yamagata Y, Inoue K (2004) Poly(ethylene oxide) thin films produced by electrospray deposition: morphology control and additive effects of alcohols on nanostructure. J Colloid Interface Sci 279(2):484–492

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Tanaka T, Yamazaki T, Iwata T (2006) 2D NMR observation of strain-induced β-form in poly[(R)-3-hydroxybutyrate]. Macromolecules 39:4086–4092

    Article  CAS  Google Scholar 

  • Ohura T, Aoyagi Y, Takagi K, Yoshida Y, Kasuya K, Doi Y (1999) Biodegradation of poly(3-hydroxyalkanoic acids) fibers and isolation of poly(3-hydroxybutyric acid)-degrading microorganisms under aquatic environments. Polym Degrad Stab 63:23–29

    Article  CAS  Google Scholar 

  • Okamura K, Marchessault RH (1967) X-ray structure of poly-β-hydroxybutyrate. In: Ramachandran CN (ed) Conformation of biopolymers, vol 2. Academic, New York, pp 709–720

    Google Scholar 

  • Orts WJ, Marchessault RH, Bluhm TL, Hamer GK (1990) Observation of strain-induced beta form in poly(beta-hydroxyalkanoates). Macromolecules 23:5368–5370

    Article  CAS  Google Scholar 

  • Qu XH, Wu Q, Zhang KY, Chen GQ (2006) In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials 27:3540–3548

    CAS  PubMed  Google Scholar 

  • Rappolee DA, Mark D, Banda MJ, Werb Z (1988) Wound macrophages express TGF-alpha and other growth factors in vivo analysis by mRNA phenotyping. Science 241:708

    Article  CAS  PubMed  Google Scholar 

  • Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer; produced by electrospinning. Nanotechnology 7(3):216–223

    Article  CAS  Google Scholar 

  • Scandola M, Ceccorulli G, Pizzoli M (1989) The physical aging of bacterial poly(D-β-hydroxybutyrate). Macromol Chem Rapid Commun 10:47–50

    Article  CAS  Google Scholar 

  • Schmack G, Jehnichen D, Vogel R, Tandler BJ (2000) Biodegradable fibers of poly(3-hydroxybutyrate) produced by high-speed melt spinning and spin drawing. Polym Sci B Polym Phys 38:2841–2850

    Article  CAS  Google Scholar 

  • Suzuki Y, Takeuchi A, Takano H, Ohigashi T, Takenaka T (2001) Diffraction-limited microbeam with Fresnel zone plate optics in hard X-ray regions. Jpn J Appl Phys 40:1508–1510

    Article  CAS  Google Scholar 

  • Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K, Ito K, Fujisawa T, Doi Y, Iwata T (2006) Formation of highly ordered structure in poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] high-strength fibers. Macromolecules 39:2940–2946

    Article  CAS  Google Scholar 

  • Tanaka T, Nagasaki K, Teramachi S, Iwata T (2007a) The preparation of high-strength P(3HB-co-3HH) fibers stretched after isothermal crystallization and analysis of formation mechanism of small crystal nuclei. Fiber Prepr Jpn 62(1):103

    Google Scholar 

  • Tanaka T, Uesugi K, Takeuchi A, Suzuki Y, Iwata T (2007b) Analysis of inner structure in high-strength biodegradable fibers by X-ray microtomography using synchrotron radiation. Polymer 48:6145–6151

    Article  CAS  Google Scholar 

  • Tanaka T, Yabe T, Teramachi S, Iwata T (2007c) Mechanical properties and enzymatic degradation of poly[(R)-3-hydroxybutyrate] fibers stretched after isothermal crystallization near Tg. Polym Degrad Stab 92:1016–1024

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimizu M, Kikutani T, Furuhashi Y, Cakmak M (1997) The effect of drawing and annealing conditions on the structure and properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers. Int Polym Process XII:29–37

    Google Scholar 

  • Yamane H, Terao K, Hiki S, Kimura Y (2001) Mechanical properties and higher order structure of bacterial homo poly(3-hydroxybutyrate) melt spun fibers. Polymer 42:3241–3248

    Article  CAS  Google Scholar 

  • Ying TH, Ishii D, Magara A, Murakami S, Yamaoka T, Sudesh K, Samian R, Fujita M, Maeda M, Iwata T (2008) Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication; characterization; bioabsorption and tissue response. Biomaterials 29:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Yokouchi M, ChataniY, Tadokoro H, Tani H (1973) Structural studies of polyesters. 5. Molecular and crystal structure of optically active and racemic poly(β-hydroxybutyrate). Polymer 14(6):267–272

    Article  CAS  Google Scholar 

  • Zong X, Bien H, Chung CY, Yin L, Fang D, Hsiao BS (2005) Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26:5330–5338

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahisa Iwata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iwata, T., Tanaka, T. (2010). Manufacturing of PHA as Fibers. In: Chen, GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03287-5_11

Download citation

Publish with us

Policies and ethics