KANSEI Based Clothing Fabric Image Retrieval

  • Yen-Wei Chen
  • Shota Sobue
  • Xinyin Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5646)


KANSEI is a Japanese term which means psychological feeling or image of a product. KANSEI engineering refers to the translation of consumers’ psychological feeling about a product into perceptual design elements. Recently KANSEI based image indexing or image retrieval have been done by using interactive genetic algorithms (IGA). In this paper, we propose a new technique for clothing fabric image retrieval based on KANSEI (impressions). We first learn the mapping function between the fabric image features and the KANSEI and then the images in the database are projected into the KANSEI space (psychological space). The retrieval is done in the psychological space by comparing the query impression with the projection of the images in database.


Image retrieval KANSEI mapping function image features psychological space impression semantic differential (SD) method neural network principal component analysis 


  1. 1.
    Rui, Y., Huang, T.S.: Image retrieval: Current techniques, promising directions, and open Issues. Journal of Visual Communication and Image Representation 10, 39–62 (1999)CrossRefGoogle Scholar
  2. 2.
    Tamura, H., Yokoya, N.: Image database systems: A survey. Pattern Recognition 17(1) (1984)Google Scholar
  3. 3.
    Niblack, W., et al.: The QBIC project: Querying images by content using color, texture, and shape. In: Storage and Retrieval for Image and Video Databases, pp. 173–187. SPIE (1993)Google Scholar
  4. 4.
    Hirata, K., Kato, T.: Query by visual example: Content based image retrieval. In: Advances in Database Technology, EDBT 1992, pp. 56–61 (1992)Google Scholar
  5. 5.
    Pentland, A., Picard, R., Sclaroff, S.: Photobook: Content-based manipulation of image databases. In: SPIE Storage and Retrieval for Image and Video Databases. SPIE (1994)Google Scholar
  6. 6.
    Zeng, X.-Y., Chen, Y.-W., Nakao, Z., Cheng, J., Lu, H.: Independent Component Analysis for Color Indexing. IEICE Trans. Information & Systems E87-D, 997–1003 (2004)Google Scholar
  7. 7.
    Han, X.-H., Chen, Y.-W., Sukegawa, T.: A supervised nonlinear neighbourhood embedding of color histogram for image indexing. In: Proc. of 15th IEEE International Conference of Image Processing (ICIP 2008), USA, pp. 949–953 (2008)Google Scholar
  8. 8.
    Grimsæth, K.: Linking emotions and product features. KANSEI Engineering, 1–45 (2005)Google Scholar
  9. 9.
    Cho, S.B., Lee, J.Y.: A human-oriented image retrieval system using iterative genetic algorithm. IEEE Trans. Systems, Man and Cybernetics, Part A 32, 452–458 (2002)CrossRefGoogle Scholar
  10. 10.
    Takagi, H., Noda, T., Cho, S.: Psychological Space to Hold Impression Among Media in Common for Media Database Retrieval System. In: Proc. of IEEE International Conference on System, Man, and Cybernetics (SMC 1999), Tokyo, Japan, vol. VI (1999)Google Scholar
  11. 11.
    Huang, X., Sobue, S., Kanda, T., Chen, Y.-W.: Linking KANSAI and image features by multi-layer neural networks. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 318–325. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Sticker, M.A., Orengo, M.: Similarity of color images. In: Proc. SPIE Storage Retrieval Still Image Video Database, pp. 381–392 (1996)Google Scholar
  14. 14.
    Deng, Y., Manjunath, B.S.: An efficient color representation for image retrieval. IEEE Trans. Image Processing 10, 140–147 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Sobue, S.: KANSEI based image retrieval by SVM and IGA. Ritsumeikan University Master’s Thesis (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yen-Wei Chen
    • 1
    • 2
  • Shota Sobue
    • 2
  • Xinyin Huang
    • 3
  1. 1.Elect & Inf. Eng. SchoolCentral South Univ. of Forest and Tech.ChangshaChina
  2. 2.Graduate School of Science and EngineeringRitsumeikan UniversityJapan
  3. 3.School of EducationSoochow UniversitySuzhouChina

Personalised recommendations