Advertisement

A Computationally Efficient Technique for Image Colorization

  • Adrian Pipirigeanu
  • Vladimir Bochko
  • Jussi Parkkinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5646)

Abstract

In this paper, the fast technique for image colorization is considered. The proposed method transfers colors from the color image (source) to the gray level image (target). For the source image, we use the segmented uniformly colored regions (dielectric surfaces) under single color illumination. This method maps the gray level image into the color space by means of parametrical mapping learnt using PCA and principal components regression. The experiments show the method’s feasibility for colorizing the objects, and textures, as well.

Keywords

Color Image Source Image Principal Component Regression Gray Level Image Green Stem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abadpour, A., Kasaei, S.: An efficient PCA-based color transfer method. Journal of Visual Communication and Image Representation 18, 15–34 (2007)CrossRefGoogle Scholar
  2. 2.
    Bochko, V., Parkkinen, J.: A spectral color analysis and colorization technique. IEEE Computer Graphics and Applications 26, 74–82 (2006)CrossRefGoogle Scholar
  3. 3.
    Chen, T., Wang, Y., Schilings, V., Meinel, C.: Grayscale image matting and colorization. In: Proc. ACCV 2004, pp. 1164–1169 (2004)Google Scholar
  4. 4.
    Drew, M.S., Finlayson, G.D.: Realistic colorization via the structure tensor. In: Proc. ICIP, pp. 457–460 (2008)Google Scholar
  5. 5.
    Horiuchi, T., Tominaga, S.: Color image coding by colorization approach. EURASIP Journal on Image and Video Processing 8, 1–9 (2008)CrossRefGoogle Scholar
  6. 6.
    Horiuchi, T., Kotera, H.: Colorization for monochrome image based on diffuse-only reflection model. In: Proc. AIC 2005, pp. 353–356 (2005)Google Scholar
  7. 7.
    Klinker, G.J., Shafer, S.A., Kanade, T.: A physical approach to color image understanding. International Journal of Computer Vision 4, 7–38 (1990)CrossRefGoogle Scholar
  8. 8.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graphics 23, 689–694 (2004)CrossRefGoogle Scholar
  9. 9.
    Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Vieira, L.F.M., do Nascimento, E.R., Fernandes Jr., A., Carceroni, R.L., Vilela, D.R., de Araújo, A.A.: Fully automatic coloring of grayscale images. Image and Vision Computing 25, 50–60 (2007)CrossRefGoogle Scholar
  11. 11.
    Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to grayscale images. Proc. ACM Siggraph 20, 277–280 (2002)Google Scholar
  12. 12.
    Zhang, X., Wandell, B.: A Spatial extension of CIELAB for digital color image reproduction. In: Proc. Soc. Information Display Symp. Technical Digest, vol. 27, pp. 731–734 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Adrian Pipirigeanu
    • 1
  • Vladimir Bochko
    • 1
  • Jussi Parkkinen
    • 1
  1. 1.Department of Computer Science and StatisticsUniversity of JoensuuJoensuuFinland

Personalised recommendations