Perceptual Color Correction: A Variational Perspective

  • Edoardo Provenzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5646)


Variational techniques provide a powerful tool for understanding image features and creating new efficient algorithms. In the past twenty years, this machinery has been also applied to color images. Recently, a general variational framework that incorporates the basic phenomenological characteristics of the human visual system has been built. Here we recall the structure of this framework and give noticeable examples. We then propose a new analytic expression for a parameter that regulates contrast enhancement. This formula is defined in terms of intrinsic image features, so that the parameter no longer needs to be empirically set by a user, but it is automatically determined by the image itself.


Human Visual System Color Constancy Contrast Function Variational Perspective Local Standard Deviation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Palma-Amestoy, R., Provenzi, E., Caselles, V., Bertalmío, M.: A perceptually inspired variational framework for color enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(3), 458–474 (2009)CrossRefGoogle Scholar
  2. 2.
    Land, E., McCann, J.: Lightness and Retinex theory. Journal of the Optical Society of America 61(1), 1–11 (1971)CrossRefGoogle Scholar
  3. 3.
    West, G.: Color perception and the limits of color constancy. Journal of Mathematical Biology 8, 47–53 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hurlbert, A.: Formal connections between lightness algorithms. Journ. Opt. Soc. Am. A 3, 1684–1693 (1986)CrossRefGoogle Scholar
  5. 5.
    Gonzales, R., Woods, R.: Digital image processing. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  6. 6.
    Creutzfeld, O., Lange-Malecki, B., Wortmann, K.: Darkness induction, retinex and cooperative mechanisms in vision. Exp. Brain Res. 67, 270–283 (1987)Google Scholar
  7. 7.
    Zaidi, Q.: Color and brightness induction: from Mach bands to three-dimensional configurations. Cambridge University Press, New York (1999)Google Scholar
  8. 8.
    Shapley, R., Enroth-Cugell, C.: Visual adaptation and retinal gain controls 3, 263–346 (1984)Google Scholar
  9. 9.
    Buchsbaum, G.: A spatial processor model for object colour perception. Journal of the Franklin Institute 310, 337–350 (1980)CrossRefGoogle Scholar
  10. 10.
    Pratt, W.: Digital Image Processing. J. Wiley & Sons, Chichester (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics. Birkhäuser, Basel (2005)zbMATHGoogle Scholar
  12. 12.
    Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Trans. on Image Proc. 16, 1058–1072 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bertalmío, M., Caselles, V., Provenzi, E.: Issues about Retinex Theory and Contrast Enhancement. International Journal of Computer Vision 83, 101–119 (2009)Google Scholar
  14. 14.
    Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local color correction. Pattern Recognition Letters 24, 1663–1677 (2003)CrossRefGoogle Scholar
  15. 15.
    Provenzi, E., De Carli, L., Rizzi, A., Marini, D.: Mathematical definition and analysis of the Retinex algorithm. Journal of the Optical Society of America A 22(12), 2613–2621 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Edoardo Provenzi
    • 1
  1. 1.Departament de Tecnologies de la Informació i les ComunicacionsUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations