Skip to main content

An Immunity Inspired Real-Time Cooperative Control Framework for Networked Multi-agent Systems

  • Conference paper
Artificial Immune Systems (ICARIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5666))

Included in the following conference series:

Abstract

This paper presents a cooperative control framework developed based on the inspiration from the immune system for controlling networked multi-agent systems. The framework is inspired from the meta-dynamics of lymphocyte repertoires in the adaptive immune system, including the continual circulation, continual turnover, concentration control and other relevant mechanisms. We design this framework for the control of a team of autonomous defending agents in RoboFlag Drill, a test-bed for studying cooperative systems. Simulation results are presented to demonstrate the effectiveness of the proposed immunity inspired cooperative control framework. The results of the simulations demonstrated that a set of defenders- can intercept attacker sets with larger set sizes from entering a specific Defense Zone for 60% of the randomly generated RoboFlag Drill problem instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forrest, S., et al.: Self-nonself discrimination in a computer (1994)

    Google Scholar 

  2. Jerne, N.: Towards a network theory of the immune system (1974)

    Google Scholar 

  3. Burnet, F.: The clonal selection theory of acquired immunity. Vanderbilt University Press, Nashville (1959)

    Book  Google Scholar 

  4. Hunt, J., Cooke, D.: Learning using an artificial immune system. Journal of network and computer applications 19(2), 189–212 (1996)

    Article  Google Scholar 

  5. Timmis, J., Neal, M., Hunt, J.: An artificial immune system for data analysis. Biosystems 55(1-3), 143–150 (2000)

    Article  Google Scholar 

  6. Kephart, J.: A biologically inspired immune system for computers. MIT Press, Cambridge (1994)

    Google Scholar 

  7. Jun, J., Lee, D., Sim, K.: Realization of cooperative strategies and swarm behavior in distributed autonomous robotic systems using artificial immune system (1999)

    Google Scholar 

  8. Lau, H.Y.K., Wong, V.W.K.: An Immunity-Based Distributed Multiagent-Control Framework. IEEE Transactions on systems, man, and cybernetics-part A: systems and humans 36(1), 91–108 (2006)

    Article  Google Scholar 

  9. Ko, A., Lau, H.Y.K., Lau, T.L.: An Immuno Control Framework for Decentralized Mechatronic Control. Int. Journ. of Unconventional Computing 1, 255–280 (2005)

    Google Scholar 

  10. Mehr, R.: Modeling the Meta-Dynamics of Lymphocyte Repertoires. Archivum Immunologiae et Therapiae Experimentalis 49, 111–120 (2001)

    Google Scholar 

  11. Somayaji, A., Hofmeyr, S., Forrest, S.: Principles of a Computer Immune System. In: 1997 New Security Paradigms Workshop, Langdale, Cumbria UK, pp. 75–82 (1997)

    Google Scholar 

  12. Tonegawa, S.: Somatic generation of antibody diversity. Nature 302, 575–581 (1983)

    Article  Google Scholar 

  13. Earl, M., D’Andrea, R.: A study in cooperative control: The RoboFlag drill. In: Proceedings of the American Control Conference, Anchorage, Alaska (2002)

    Google Scholar 

  14. Vecchio, D.D.: Cascade estimators for systems on a partial order. Systems & Control Letters 57, 842–850 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Janeway, C., et al.: Immunobiology: the immune system in health and disease (1997)

    Google Scholar 

  16. Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. Evolutionary Computation 8(4), 443–473 (2000)

    Article  Google Scholar 

  17. Antsaklis, P.J., Baillieul, J.: Special Issue on Technology of Networked Control Systems. Proceedings of the IEEE, Special Issue on Networked Control Systems 95(1) (2007)

    Google Scholar 

  18. Bullo, F., Cortés, J., Piccoli, B.: Special Issue on Control and Optimization in Cooperative Networks. SIAM Journal on Control and Optimization 48(1) (2009)

    Google Scholar 

  19. Watts, D.J.: Connections: A twenty-first century science. Nature 445(489) (2007)

    Google Scholar 

  20. Alderson, D.L.: Catching the "Network Science" Bug: Insight and Opportunity for the Operations Researcher. Operations Research 56(5) (2008)

    Google Scholar 

  21. Amaral, L.A.N., Uzzi, B.: Complex Systems—A New Paradigm for the Integrative Study of Management, Physical, and Technological Systems. Management Science 53(7), 1033–1035 (2007)

    Article  Google Scholar 

  22. The NRC report, Network Science (2005)

    Google Scholar 

  23. DeGroot, M.H.: Reaching a consensus. Journal of American Statistical Association 69(345), 118–121 (1974)

    Article  MATH  Google Scholar 

  24. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. on Automatic Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  25. Marden, J.R., Arslan, G., Shamma, J.S.: Connections Between Cooperative Control and Potential Games. IEEE Transactions on Systems, Man and Cybernetics. Part B: Cybernetics (2009)

    Google Scholar 

  26. Hanaki, N., et al.: Cooperation in Evolving Social Networks. Management Science 53(7), 1036–1050 (2007)

    Article  MATH  Google Scholar 

  27. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations 2009. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  28. Dias, M.B., et al.: Market-Based Multirobot Coordination: A Survey and Analysis, Robotics Institute, Carnegie Mellon University (2005)

    Google Scholar 

  29. Gerkey, B., Mataric, M.: Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation 18(5), 758–768 (2002)

    Article  Google Scholar 

  30. D’Andrea, R., Babish, M.: The RoboFlag testbed. In: Proceedings of the American Control Conference (2003)

    Google Scholar 

  31. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, New York (2002)

    MATH  Google Scholar 

  32. Earl, M., D’Andrea, R.: Multi-vehicle cooperative control using mixed integer linear programming. Arxiv preprint cs.RO/0501092 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, S.Y.P., Lau, H.Y.K. (2009). An Immunity Inspired Real-Time Cooperative Control Framework for Networked Multi-agent Systems. In: Andrews, P.S., et al. Artificial Immune Systems. ICARIS 2009. Lecture Notes in Computer Science, vol 5666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03246-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03246-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03245-5

  • Online ISBN: 978-3-642-03246-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics