Skip to main content

Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships

  • Conference paper
Book cover Static Analysis (SAS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5673))

Included in the following conference series:

Abstract

We introduce a new numerical abstract domain, so-called interval polyhedra (itvPol), to infer and propagate interval linear constraints over program variables. itvPol, which allows to represent constraints of the form ∑  k [a k ,b k ]x k  ≤ c, is more expressive than the classic convex polyhedra domain and allows to express certain non-convex (even unconnected) properties. The implementation of itvPol can be constructed based on interval linear programming and an interval variant of Fourier-Motzkin elimination. The preliminary experimental results of our prototype are encouraging, especially for programs affected by interval uncertainty, e.g., due to uncertain input data or interval-based abstractions of disjunctive, non-linear, or floating-point expressions. To our knowledge, this is the first application of interval linear algebra to static analysis.

This work is supported by the INRIA project “Abstraction” common to CNRS and ENS in France, and by the National Natural Science Foundation of China under Grant No.60725206.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APRON numerical abstract domain library, http://apron.cri.ensmp.fr/library/

  2. Allamigeon, X., Gaubert, S., Goubault, E.: Inferring min and max invariants using max-plus polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 189–204. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 135–148. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Chineck, J.W., Ramadan, K.: Linear programming with interval coefficients. Journal of the Operational Research Society 51(2), 209–220 (2000)

    Article  MATH  Google Scholar 

  6. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proc. of the 2nd International Symposium on Programming, Dunod, Paris, pp. 106–130 (1976)

    Google Scholar 

  7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: ACM POPL 1977, pp. 238–252. ACM Press, New York (1977)

    Google Scholar 

  8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: ACM POPL 1979, pp. 269–282. ACM Press, New York (1979)

    Google Scholar 

  9. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to comportment analysis generalizing strictness, termination, projection and PER analysis of functional languages). In: ICCL 1994, pp. 95–112. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: ACM POPL 1978, pp. 84–96. ACM Press, New York (1978)

    Google Scholar 

  11. Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract interpretation. Sci. Comput. Program 32(1-3), 177–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Granger, P.: Static analysis of arithmetical congruences. International Journal of Computer Mathematics 30, 165–199 (1989)

    Article  MATH  Google Scholar 

  13. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression abstraction and max operator with application in timing analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Jansson, C.: Calculation of exact bounds for the solution set of linear interval systems. Linear Algebra and Its Applications 251, 321–340 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jansson, C.: Rigorous lower and upper bounds in linear programming. SIAM Journal on Optimization 14(3), 914–935 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lalire, G., Argoud, M., Jeannet, B.: Interproc, http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/

  17. Laviron, V., Logozzo, F.: Subpolyhedra: A (more) scalable approach to infer linear inequalities. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 229–244. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Makhorin, A.: The GNU Linear Programming Kit (2000), http://www.gnu.org/software/glpk/

  19. Miné, A.: Relational abstract domains for the detection of floating-point run-time errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1), 31–100 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 348–363. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6, 405–409 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rohn, J.: A handbook of results on interval linear problems. Technical report, Czech Academy of Sciences, Prague, Czech Republic (April 2005)

    Google Scholar 

  24. Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Linear Optimization Problems with Inexact Data, pp. 35–77. Springer, US (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, L., Miné, A., Wang, J., Cousot, P. (2009). Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships. In: Palsberg, J., Su, Z. (eds) Static Analysis. SAS 2009. Lecture Notes in Computer Science, vol 5673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03237-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03237-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03236-3

  • Online ISBN: 978-3-642-03237-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics