Skip to main content

Process-based investigations and monitoring of deep-seated landslides

  • Chapter
  • First Online:
Sustainable Natural Hazard Management in Alpine Environments

Abstract

Through the consolidation of alpine settlement areas there have been an increasing number of incidents in recent years related to the activity of landslides in Northern Tyrol (Austria). This has led to humans, buildings, and communication and transportation routes being increasingly threatened. In 1999 a rockfall event in Huben (Ötztal, Austria) destroyed a wood mill and cut the main power supply for the inner Ötztal. In the same year increased deformation rates at the Eiblschrofen (Schwaz, Austria) induced reoccurring rockfall events. In early summer 2003, parts of the deep-seated Steinlehnen rockslide system (Gries i. Sellrain, Austria) were reactivated, causing an acceleration of a sliding slab (Henzinger 2005). Secondary events in the form of increased rockfall activity were the direct consequence of these slope movements and demanded temporary evacuations and roadblocks as immediate measure. In order to protect the road and settlement area permanently a safety dam was built. After the floods in Tyrol in August 2005, parts of the complex Zintlwald landslide system (Strengen, Austria) accelerated. This was triggered on the one hand by increased water infiltration of the slope and on the other hand by intense fluvial erosion of the slope foot. As a consequence important supra-regional infrastructure such as sections of the Arlberg national road were destroyed. In addition, the possibility was given that a rapid landslide could dam the river Rosanna. Considering that a collapse of this dam would entail a sudden flood event downstream, a monitoring and warning system has been installed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abele G (1974) Bergstürze in den Alpen. Ihre Verbreitung, Morphologie und Folgeerscheinungen. Wiss. Alpenvereinshefte, München 25, pp 1-230

    Google Scholar 

  • Allen R (1978) Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America 68(5), pp 1521-1532

    Google Scholar 

  • Allen R (1982) Automatic phase pickers: their present use and future prospects. Bulletin of the Seismological Society of America 72(6), pp 225-242

    Google Scholar 

  • Amann F (2006) Großhangbewegung Cuolm da Vi (Graubünden, Schweiz). Geologisch-geotechnische Befunde und numerische Untersuchungen zur Klärung des Phänomens. Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg, p. 206

    Google Scholar 

  • Atkinson BK (1984) Subcritical crack growth in geological materials. Journal of Geophysical Research 89(B6), pp 4077-4114

    Article  Google Scholar 

  • Atkinson BK (1987) Introduction to fracture mechanics and its geophysical applications. In: Atkinson BK (ed), Fracture mechanics of rock, Academic Press, pp 1-26

    Google Scholar 

  • Azzoni A, Chiesa S, Frassoni A, Govi M (1992) The Val Pola Landslide. Engineering Geology 33, pp 59-70

    Article  Google Scholar 

  • Brückl E, Brückl J (2006) Geophysical models of the Lesachriegel and Gradenbach deep-seated mass movements (Schober range, Austria). Engineering Geology, 83(1-3), pp 254-272

    Article  Google Scholar 

  • Brückl E, Parotidis M (2005) Prediction of slope instabilities due to deep-seated gravitational creep. Natural Hazards and Earth System Sciences 5, pp 155-172

    Google Scholar 

  • Brückl E, Zangerl C, Tentschert E (2004) Geometry and deformation mechanisms of a deep seated gravitational creep in crystalline rocks. In.: Schubert (ed), Proceedings EUROCK 2004 & 53rd Geomechanics Colloquium, pp 229-230

    Google Scholar 

  • Brückl E, Behm M, Chwatal W (2003) The application of signal detection and stacking techniques to refraction seismic data. Oral Presentation at AGU, San Francisco, 08-12 December 2003

    Google Scholar 

  • Cappa F, Guglielmi Y, Soukatchoff VM, Mudry J, Bertrand C, Charmoille A (2004) Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring: example of the La Clapière landslide (Southern Alps, France). Journal of Hydrology 291(1-2), pp 67-90

    Article  Google Scholar 

  • Casson B, Delacourt C, Baratoux D, Allemand P (2003) Seventeen years of the ‘‘La Clapière’’ landslide evolution analysed from ortho-rectified aerial photographs. Engineering Geology 68, pp 123-139

    Article  Google Scholar 

  • Chwatal W, Kirschner H, Brückl E, Zangerl C (2005) Geology and 3D seismic structure of the Niedergallmigg-Matekopf mass-movement, Tyrol, Austria. EGU 2005, Wien, Geophys. Res. Abst. 7, 02566

    Google Scholar 

  • Chwatal W, Kirschner H, Brückl E, Zangerl C (2006) Kinematics and Hazard of the Niedergallmigg-Matekopf mass movement. EGU 2006, Wien, Geophys. Res. Abst. 8, 05998

    Google Scholar 

  • Cruden DM (1991) A simple definition of a landslide. Bulletin International Association for Engineering Geology 43, pp 27-29

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide Types and Processes. In: Turner AK, Schuster RL (ed) Landslides: investigation and mitigation (Spec. Rep. 247), National Academy Press, Washington D.C., pp 36-75

    Google Scholar 

  • Dapples F, Oswald D, Raetzo H, Lardelli T, Zwahlen P (2003) New records of Holocene landslide activity in the Western and Eastern Swiss Alps: Implication of climate and vegetation changes. Ecl. Geol. Helv. 96, pp 1-9

    Google Scholar 

  • Dieterich J (1992) Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophysics 211, pp 115-134

    Article  Google Scholar 

  • Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes-the 1991 Randa rockslide. Int. J. Rock Mech. Min. Sci. 41, pp 69-87

    Article  Google Scholar 

  • Einstein HH (1993) Modern developments in discontinuity analysis - the persistence-connectivity problem. In: Hudson JA (ed) Comprehensive Rock Engineering, Volume 3, Pergamon Press, Oxford, pp 193-213

    Google Scholar 

  • Einstein HH, Stephansson O (2000) Fracture systems, fracture propagation and coalescence, Issue Paper, Proc. GeoEng 2000, Melbourne

    Google Scholar 

  • Einstein HH, Veneziano D, Baecher GB, O’Reilly KJ (1983) The effect of discontinuity persistence on rock slope stability. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 20(5), pp 227-236

    Article  Google Scholar 

  • Evers H (2006) Geodätisches Monitoring und einfache statistische Auswertungsmöglichkeiten für Massenbewegungen an Hängen. Master Thesis, HTWK Leipzig, p 118

    Google Scholar 

  • Ewing WM, Jardetzky WS, Press F (1957) Elastic waves in layered media, Mc Graw-Hill Book Company, New York

    Google Scholar 

  • François B, Tacher L, Bonnard Ch, Laloui L, Triguero V (2007) Numerical modelling of the hydrogeological and geomechanical behaviour of a large slope movement: the Triesenberg landslide (Liechtenstein). Canadian Geotechnical Journal 44, pp 840-857

    Article  Google Scholar 

  • Gassmann F (1951) Über die Elastizität poröser Medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 96(1), pp 1-23

    Google Scholar 

  • Geyh MA, Schleicher H (1990) Absolute age determination: physical and chemical dating methods and their application. Springer, p 503

    Google Scholar 

  • Helmstetter A, Sornette D, Grasso JR, Andersen JV, Gluzman S, Pisarenko V (2004) Slider block friction model for landslides: Application to Vaiont and La Clapière landslides. Journal of Geophysical Research 109(B02409), pp 1-15

    Google Scholar 

  • Henzinger J (2005) Massenbewegung Steinlehne-Gries im Sellrain. In: Heissel G, Mostler H (ed) Geoforum Umhausen Band 3, pp 71-82

    Google Scholar 

  • Hermanns RL, Blikra L H, Naumann M, Nilsen B, Panthi KK, Stromeyer D, Longva O (2006) Examples of multiple rock-slope collapses from Köfels (Ötz valley, Austria) and western Norway, Engineering Geology 83, pp 94-108

    Article  Google Scholar 

  • Heuberger H (1966) Gletschergeschichtliche Untersuchungen in den Zentralalpen zwischen Sellrain und Ötztal. Innsbruck, Wiss. Alpenvereinshefte 20, 1-126

    Google Scholar 

  • Hole JA (1992) Nonlinear high-resolution three-dimensional seismic travel time tomography. Journal of Geophysical Research 97, pp 6553-6562

    Article  Google Scholar 

  • Hudson JA, Harrison JP (1997) Engineering rock mechanics. Elsevier Science Ltd., UK, p. 444

    Google Scholar 

  • Ivy-Ochs S, Heuberger H, Kubik PW, Kerschner H, Bonani G, Frank, M, Schlüchter C (1998) The age of the Köfels event. Relative, 14C and cosmogenic isotope dating of an early Holocene landslide in the Central Alps (Tyrol, Austria). Zs. Gletscherkd. Glazialgeol. 34 (1), pp 57-68

    Google Scholar 

  • Jerz H, v. Poschinger A (1995) Neueste Ergebnisse zum Bergsturz Eibsee-Grainau. Geol. Bavarica 99, pp 383-398

    Google Scholar 

  • Joswig M (1990) Pattern Recognition for earthquake detection. Bulletin of the Seismological Society of America 80(1), pp 170-186

    Google Scholar 

  • Kearey P (2002) An introduction to geophysical exploration, Brooks und I. Hill, p 262

    Google Scholar 

  • Kemeny J (2003) The Time-Dependent Reduction of Sliding Cohesion due toRock Bridges Along Discontinuities: A Fracture Mechanics Approach. Rock Mechanics Rock Engineering 36 (1), pp 27-38

    Article  Google Scholar 

  • Kemeny J, Norton B, Turner K (2006) Rock Slope Stability Analysis Utilizing Ground-based LIDAR and Digital Image Processing. Felsbau 24(3), pp 8-15

    Google Scholar 

  • Keusen HR (1998) Warn- und Überwachungssysteme (Frühwarndienste), Fan-Forum, Zollikofen, 1-40

    Google Scholar 

  • Kirschner H, Gillarduzzi K (2005) Geodätisches Monitoring und Modellierung instabiler Hänge. In: Chesi G,Weinold T (ed) Internationale geodätische Woche Obergurgl 2005, Austria, pp 193-197

    Google Scholar 

  • Kovári K (1988) General report: Methods of monitoring landslides. In: Bonnard C. (ed), Land-slides, Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, Balkema, Vol 3, pp 1421-1433

    Google Scholar 

  • Krähenbühl R (2004) Temperatur und Kluftwasser als Ursachen von Felssturz. Bull. Angew. Geol. 9(1), pp 19-35

    Google Scholar 

  • Krähenbühl R (2006) Der Felssturz, der sich auf die Stunde genau ankündigte. Bull. Angew. Geol. 11(1), pp 49-63

    Google Scholar 

  • Krainer K, Mostler W, Span N (2002) A glacierderived, ice-cored rock glacier in the western Stubai Alps (Austria): evidence from ice exposures and Ground Penetrating Radar investigation. Zs. f. Gletscherkunde u. Glazialgeologie, Innsbruck, 38(1), pp 21-34

    Google Scholar 

  • Lang A, Moya J, Corominas J, Schrott L, Dikau R (1999) Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 30, pp 33-52

    Article  Google Scholar 

  • Leobacher A, Liegler K (1998) Langzeitkontrolle von Massenbewegungen der Stauraumhänge des Speichers Durlaßboden. Felsbau 16(3), pp 184-193

    Google Scholar 

  • Lomax A, Virieux J, Volant P, Berge C (2000) Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations. In: Thurber CH, Rabinowitz N (ed) Advances in Seismic Event Location, Kluwer, Amsterdam, pp 101-134

    Google Scholar 

  • Magotra N, Ahme N, Chael E (1987) Seismic event detection and source location using single-station (three-component) data. Bulletin of the Seismological Society of America, 77(3), pp 958-971

    Google Scholar 

  • Marchesoni V (1958) La datazione col metodo del carbonio 14 del Lago di Molveno e dei resti vegetali riemersi in seguito allo svaso. Studi trentini d scienze naturali, Trento, (cit. in: Abele 1974), pp 95-98

    Google Scholar 

  • Mertl S, Brückl E (2007) Detection and localization of micro-earthquakes on deep-seated mass movements. Geophysical Research Abstracts, Vol. 9, 07187

    Google Scholar 

  • Noverraz FI (1996) Sagging or deep-seated creep: Fiction or reality? In. Senneset (ed) Proceedings of the 7th International Symposium on Landslides, Balkema, Rotterdam, pp 821-828

    Google Scholar 

  • Ostermann M, Sanders D, Prager C, Kramers J (2007) Aragonite and calcite cement “boulder-controlled” meteoric environments on the Fern Pass rockslide (Austria): implications for radiometric age-dating of catastrophic mass movements, Facies 53, pp 189-208

    Article  Google Scholar 

  • Patzelt G (1977) Der zeitliche Ablauf und das Ausmass postglazialer Klimaschwankungen in den Alpen. In: Frenzel B (ed) Dendrochronologie und postglaziale Klimaschwankungen in Europa, Steiner, Wiesbaden, pp 248-259

    Google Scholar 

  • Patzelt G (1987) Untersuchungen zur nacheiszeitlichen Schwemmkegel- und Talentwicklung in Tirol. Veröff. Mus. Ferdinandeum, Innsbruck 67, pp 93-123

    Google Scholar 

  • Patzelt G, Poscher G (1993) Der Tschirgant-Bergsturz. Arbeitstagung 1993 Geol. B.-A., Geologie des Oberinntaler Raumes, Schwerpunkt Blatt 144 Landeck, Exkursion D: Bemerkenswerte Geologische und Quartärgeologische Punkte im Oberinntal und aus dem äußerem Ötztal, pp 206-213

    Google Scholar 

  • Patzelt, G., 2004: Tschirgant-Haiming-Pletzachkogel. Datierte Bergsturzereignisse im Inntal und ihre talgeschichtlichen Folgen. Öffentl. Vortrag, 13.10.2004, alpS Symposium Naturgefahren Management 2004, Galtür

    Google Scholar 

  • Podvin P, Lecomte I (1991) Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys. J. Int. 105, pp 271-284

    Google Scholar 

  • Poscher G, Patzelt G (2000) Sink-hole Collapses in Soft Rocks. Felsbau, Rock and Soil Engineering 18(1), pp 36-40

    Google Scholar 

  • Prager C, Krainer K, Seidl V, Chwatal W (2006) Spatial features of Holocene Sturzstrom-deposits inferred from subsurface investigations (Fernpass rockslide, Tyrol, Austria). Geo.Alp 3, pp 147-166

    Google Scholar 

  • Prager C, Zangerl C, Brandner R & Patzelt G (2007) Increased rockslide activity in the Middle Holocene ? New evidences from the Tyrolean Alps (Austria). In: McInnes R, Jakeways J, Fairbank H & Mathie E (eds), Landslides and Climate Change, Challenges and Solutions, Taylor & Francis, pp 25-34

    Google Scholar 

  • Prager C, Ivy-Ochs S, Ostermann M, Synal HA, Patzelt G (2008a) Geology and radiometric 14C-, 36Cl- and Th-/U-dating of the Fernpass rockslide (Tyrol, Austria), Geomorphology, in press

    Google Scholar 

  • Prager C, Zangerl C, Patzelt G, Brandner R. (2008b) Age distribution of fossil landslides in the Tyrol (Austria) and surrounding areas. Nat. Hazards Earth Syst. Sci., in press

    Google Scholar 

  • Raetzo-Brülhart H (1997) Massenbewegungen im Gurnigelflysch und Einfluss der Klimaänderung. Arb.-Ber. NFP 31, Hochsch.-Verlag. ETH Zürich

    Google Scholar 

  • Renk D (2006) Geotechnische Untersuchungen von Gleitzonenmaterialien großer Hangbewegungen. Master thesis, Universität Karlsruhe (TH), Universität Innsbruck

    Google Scholar 

  • Rott H, Scheuchl B, Siegel A, Grasemann B (1999) Monitoring very slow slope movements by means of SAR interferometry: A case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophysical Res. Letters 26(11), pp 1629-1632

    Article  Google Scholar 

  • Ruina A (1983) Slip instability and state variable friction laws. Journal of Geophysical Research 88, pp 10359-10370

    Article  Google Scholar 

  • Sarnthein v.R (1940) Moor- und Seeablagerungen aus den Tiroler Alpen und ihre waldgeschichtliche Bedeutung. II. Teil: Seen der Nordtiroler Kalkalpen. Beih. Botan. Zentralblatt, LX, Abt. B (3), pp 437-492

    Google Scholar 

  • Sartori M, Baillifard F, Jaboyedoff M, Rouille JD (2003) Kinematics of the 1991 Randa rockslides (Valais, Switzerland). Natural Hazards and Earth System Sciences 3, pp 423-433

    Article  Google Scholar 

  • Sass O, Wollny K (2001) Investigations regarding alpine talus slopes using ground-penetrating radar (GPR) in the Bavarian Alps, Germany. Earth Surf. Process. Landforms 26, pp 1071-1086

    Article  Google Scholar 

  • Scheikl M, Angerer H, Dölzlmüller J, Poisel R, Poscher G (2000) Multidisclinary Monitoring Demonstrated in the Case Study of the Eiblschrofen Rock fall. Felsbau 18(1), pp 24-29

    Google Scholar 

  • Schmidegg O (1966) Bericht Staudamm Gepatsch, Geologie im Speicherbecken. Unveröffentlichter Bericht, K13-392, TIWAG Innsbruck

    Google Scholar 

  • Schneider-Muntau B, Renk D, Marcher T, Fellin W (2006) The Importance of Laboratory Experiments in Landslide Investigation. In: Nadim F, Pöttler R, Einstein H, Klapperich H, Kramer S (ed) Geohazards, ECI Symposium Series, Volume P7 (2006). http://services.bepress.com/eci/geohazards/12

  • Soldati M, Corsini A, Pasuto A (2004) Landslides and climate change in the Italian Dolomites since the Late glacial. Catena 55, pp 141-161

    Article  Google Scholar 

  • Tentschert E (1998) Das Langzeitverhalten der Sackungshänge im Speicher Gepatsch (Tirol, Österreich). Felsbau 16(3), pp 194-200

    Google Scholar 

  • Varnes DJ (1978) Slope Movement Types and Processes. In: Schuster RL, Krizek RJ (ed) Landslides-Analysis and Control, Special Report 176 (2), Washington D.C. (National Academy of Sciences), pp 11-33

    Google Scholar 

  • Voight B (1988) Material science law applies to time forecasts of slope failure. In: Bonnard C. (ed), Landslides, Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, Balkema, Vol 3, pp 1471-1472

    Google Scholar 

  • Wagner GS, Owens TJ (1996) Signal detection using multi-channel seismic data. Bulletin of the Seismological Society of America, 86(1A), pp 221-231

    Google Scholar 

  • Watkins JS, Walters LA, Godso LA (1972) Dependence of in-situ compressional wave velocity on porosity in unsaturated rocks, Geophysics 37(1), pp 29-35

    Article  Google Scholar 

  • Watson AD, Martin CD, Moore DP, Stewart, TWG, Lorig LJ (2006) Integration of Geology, Monitoring and Modelling to Assess Rockslide Risk. Felsbau 24(3), pp 50-58

    Google Scholar 

  • Weidner S (2000) Kinematik und Mechanismus tiefgreifender alpiner Hangdeformationen unter besonderer Berücksichtigung der hydrogeologischen Verhältnisse. Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg

    Google Scholar 

  • Willenberg H (2004) Geologic and kinematic model of a complex landslide in crystalline rock (Randa, Switzerland). Dissertation Thesis, ETH Zurich, No. 15581, p 184

    Google Scholar 

  • Yilmaz O (1987) Seismic Data Processing, Seismic data processing: Soc. of Expl. Geophys, p 526

    Google Scholar 

  • Zangerl C, Eberhardt E, Schönlaub H, Anegg J (2007) Deformation behaviour of deep-seated rockslides in crystalline rock. In: Proceeding of the 1st Canada - U.S. Rock Mechanics Symposium, Vancouver, Canada, pp 901-908

    Google Scholar 

  • Zischinsky U (1969) Über Sackungen. Rock Mechanics, 1, pp 30-52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zangerl, C. et al. (2009). Process-based investigations and monitoring of deep-seated landslides. In: Veulliet, E., Johann, S., Weck-Hannemann, H. (eds) Sustainable Natural Hazard Management in Alpine Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03229-5_5

Download citation

Publish with us

Policies and ethics