Skip to main content

Constraint Programming Models for Transposition Distance Problem

  • Conference paper
Advances in Bioinformatics and Computational Biology (BSB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5676))

Included in the following conference series:

Abstract

Genome Rearrangements addresses the problem of finding the minimum number of global operations, such as transpositions, reversals, fusions and fissions that transform a given genome into another. In this paper we deal with transposition events, which are events that change the position of two contiguous block of genes in the same chromosome. The transposition event generates the transposition distance problem, that is to find the minimum number of transposition that transform one genome (or chromosome) into another. Although some tractables instances were found [20,14], it is not known if an exact polynomial time algorithm exists. Recently, Dias and Souza [9] proposed polynomial-sized Integer Linear Programming (ILP) models for rearrangement distance problems where events are restricted to reversals, transpositions or a combination of both. In this work we devise a slight different approach. We present some Constraint Logic Programming (CLP) models for transposition distance based on known bounds to the problem.

This work is partially sponsored by CNPq (472504/2007-0 and 479207/2007-0) and FAPESP (2007/05574-4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apt, K., Wallace, M.: Constraints Logic Programming using Eclipse. Cambridge (2007)

    Google Scholar 

  2. Bafna, V., Pevzner, P.A.: Sorting by reversals: Genome rearrangements in plant organelles and evolutionary history of X chromosome. Molecular Biology and Evolution 12(2), 239–246 (1995)

    CAS  Google Scholar 

  3. Bafna, V., Pevzner, P.A.: Sorting by Transpositions. SIAM Journal on Discrete Mathematics 11(2), 224–240 (1998)

    Article  Google Scholar 

  4. Benoît-Gagné, M., Hamel, S.: A New and Faster Method of Sorting by Transpositions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 131–141. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Caprara, A., Lancia, G., Ng, S.-K.: A Column-Generation Based Branch-and-Bound Algorithm for Sorting by Reversals. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, The American Mathematical Society 47, 213–226 (1999)

    Google Scholar 

  6. Caprara, A., Lancia, G., Ng, S.-K.: Sorting Permutations by Reversals through Branch-and-Price. Technical Report OR-99-1, DEIS - Operations Research Group, University of Bologna (1999)

    Google Scholar 

  7. Caprara, A., Lancia, G., Ng, S.-K.: Fast Practical Solution of Sorting by Reversals. In: Proceedings of the 11th ACM-SIAM Annual Symposium on Discrete Algorithms (SODA 2000), San Francisco, USA, pp. 12–21. ACM Press, New York (2000)

    Google Scholar 

  8. Christie, D.A.: Genome Rearrangement Problems. PhD thesis, Glasgow University (1998)

    Google Scholar 

  9. Dias, Z., Souza, C.: Polynomial-sized ILP Models for Rearrangement Distance Problems. In: BSB 2007 Poster Proceedings (2007)

    Google Scholar 

  10. Dobzhansky, T., Sturtevant, A.H.: Inversions in the third chromosome of wild races of Drosophila pseudoobscura, and their use in the study of the history of the species. Proceedings of the National Academy of Science 22, 448–450 (1936)

    Article  Google Scholar 

  11. The Eclipse Constraint Programming System (March 2009), http://www.eclipse-clp.org

  12. Elias, I., Hartmn, T.: A 1.375-Approximation Algorithm for Sorting by Transpositions. IEEE/ACM Trans. Comput. Biol. Bioinformatics 3(4), 369–379 (2006)

    Article  Google Scholar 

  13. Eriksson, H., Eriksson, K., Karlander, J., Svensson, L., Wästlund, J.: Sorting a Bridge Hand. Discrete Math. 241(1-3), 289–300 (2001)

    Article  Google Scholar 

  14. Fortuna, V.J.: Distâncias de transposição entre genomas. Master’s thesis, Institute of Computing, University of Campinas (2005)

    Google Scholar 

  15. Hannenhalli, S., Pevzner, P.A.: Transforming Cabbage into Turnip (Polynomial Algorithm for Sorting Signed Permutations by Reversals). In: Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing, Las Vegas, USA, May 1995, pp. 178–189 (1995)

    Google Scholar 

  16. Hannenhalli, S., Pevzner, P.A.: Transforming Men into Mice (Polynomial Algorithm for Genomic Distance Problem). In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS 1995), October 1995, pp. 581–592. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  17. Hartman, T., Sharan, R.: A Simpler 1.5-approximation Algorithm for Sorting by Transpositions, pp. 156–169. Springer, Heidelberg (2003)

    Google Scholar 

  18. Hausen, R.A., Faria, L., Figueiredo, C.M.H., Kowada, L.A.B.: On the toric graph as a tool to handle the problem of sorting by transpositions. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS (LNBI), vol. 5167, pp. 79–91. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Kececioglu, J.D., Ravi, R.: Of Mice and Men: Algorithms for Evolutionary Distances Between Genomes with Translocation. In: Proceedings of the 6th Annual Symposium on Discrete Algorithms, January 1995, pp. 604–613. ACM Press, New York (1995)

    Google Scholar 

  20. Labarre, A.: New Bounds and Tractable Instances for the Transposition Distance. IEEE/ACM Trans. Comput. Biol. Bioinformatics 3(4), 380–394 (2006)

    Article  Google Scholar 

  21. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  22. Mira, C.V.G., Dias, Z., Santos, H.P., Pinto, G.A., Walter, M.E.: Transposition Distance Based on the Algebraic Formalism. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS (LNBI), vol. 5167, pp. 115–126. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Palmer, J.D., Herbon, L.A.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. Journal of Molecular Evolution 27, 87–97 (1988)

    Article  Google Scholar 

  24. Walter, M.E.M.T., Dias, Z., Meidanis, J.: A New Approach for Approximating the Transposition Distance. In: Proceedings of the String Processing and Information Retrieval (SPIRE 2000) (September 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dias, U., Dias, Z. (2009). Constraint Programming Models for Transposition Distance Problem. In: Guimarães, K.S., Panchenko, A., Przytycka, T.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2009. Lecture Notes in Computer Science(), vol 5676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03223-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03223-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03222-6

  • Online ISBN: 978-3-642-03223-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics