Top-Down Causation and the Human Brain

  • George F. R. Ellis


A reliable understanding of the nature of causation is the core feature of science. In this paper the concept of top-down causation in the hierarchy of structure and causation is examined in depth. Five different classes of top-down causation are identified and illustrated with real-world examples. They are (1) al gorithmic top-down causation; (2) top-down causation via nonadaptive information control; (3) top-down causation via adaptive selection; (4) top-down causation via adaptive information control; and (5) intelligent top-down causation (i.e., the effect of the human mind on the physical world). Recognizing these forms of causation implies that other kinds of causes than physical and chemical interactions are effective in the real world. Because of the existence of random processes at the bottom, there is sufficient causal slack at the physical level to allow all these kinds of causation to occur without violation of physical causation. That they do indeed occur is indicated by many kinds of evidence. Each such kind of causation takes place in particular in the human brain, as is indicated by specific examples.


complex systems hierarchy causation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P.W.: More is different. Science 177, 377 (1972); Reprinted in Anderson, P.W.: A Career in Theoretical Physics. World Scientific, Singapore (1994)Google Scholar
  2. Beer, M.E., Connors, B.W., Paradiso, M.A.: Neuroscience: Exploring the Brain. Lippincot, Williams and Wilkins, Philadelphia (2007)Google Scholar
  3. Beer, S.: Decision and Control. Wiley, New York (1966)Google Scholar
  4. Berger, P.: Invitation to sociology: A humanistic perspective. Doubleday, New York (1963)Google Scholar
  5. Berger, P., Luckmann, T.: The social construction of reality: A treatise in the sociology of knowledge. Anchor, New York (1967)Google Scholar
  6. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1999)Google Scholar
  7. Bishop, R., Atmanspacher, H.: Contextual emergence in the description of properties. Foundations of Physics 36, 1753–1777 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  8. Booch, G.: Object oriented analysis and design with applications. Addison Wesley, New York (1994)Google Scholar
  9. Boulding, K.E.: The image: Knowledge in life and society. University of Michigan Press, Ann Arbor (1961)Google Scholar
  10. Cacioppo, J.T., Berntson, G.G., Adophs, R., Carter, C.S., Davidson, R.J., McClintock, M.K., Mcewan, B.S., Meaney, M.J., Schacter, D.L., Sternberg, E.M., Suomi, S.S., Taylor, S.E. (eds.): Foundations in social neuroscience. MIT Press, Cambridge (2002)Google Scholar
  11. Campbell, D.T.: Downward causation. In: Ayala, F.J., Dobhzansky, T. (eds.) Studies in the philosophy of biology: Reduction and related problems, pp. 179–186. University of California Press, Berkeley (1974)Google Scholar
  12. Campbell, N.A., Reece, J.B.: Biology, 7th edn. Pearson, Benjamin Cummings, San Francisco (2005)Google Scholar
  13. Churchman, C.W.: The systems approach. Delacorte Press, New York (1968)Google Scholar
  14. Crick, F.: The astonishing hypothesis The scientific search for the soul. Scribner, New York (1995)Google Scholar
  15. Deacon, T.: The symbolic species: The co-evolution of language and the human brain. Penguin, London (1997)Google Scholar
  16. Devlin, K.: Mathematics: The science of patterns. Henry Holt & Company, New York (1996)Google Scholar
  17. Dodelson, S.: Modern cosmology. Academic Press, San Diego (2003)Google Scholar
  18. Donald, M.: A mind so rare: The evolution of human consciousness. W.W. Norton, New York (2001)Google Scholar
  19. Edelman, G.M.: Neural Darwinism: The theory of group neuronal selection. Oxford University Press, Oxford (1989)Google Scholar
  20. Ellis, G.F.R.: Physics, complexity, and causality. Nature 435, 743 (2005), CrossRefADSGoogle Scholar
  21. Ellis, G.F.R.: On the nature of emergent reality. In: Clayton, P., Davies, P.C.W. (eds.) The Re-emergence of emergence, pp. 79–110. Oxford University Press, Oxford (2006a)Google Scholar
  22. Ellis, G.F.R.: Physics and the real world. Foundations of Physics 26(2), 227–236 (2006b)CrossRefADSGoogle Scholar
  23. Ellis, G.F.R.: On the nature of causation in complex systems. Transactions of the Royal Society of South Africa [Centenary Issue] 63, 69–84 (2008)CrossRefGoogle Scholar
  24. Ellis, G.F.R., Toronchuk, J.A.: Neural development: Affective and immune system influences. In: Ellis, R.D., Newton, N. (eds.) Consciousness and emotion, pp. 81–119. John Benjamins, Philadelphia (2005), Google Scholar
  25. Falcon, A. (2006), Aristotle on Causality. Stanford Encyclopedia of Philosophy,
  26. Feynman, R.: The character of physical law. Penguin, London (1992)Google Scholar
  27. Flood, R.L., Carson, E.R.: Dealing with complexity: An introduction to the theory and application of systems science. Plenum, London (1990)Google Scholar
  28. Frankl, V.: Man’s Search for Meaning. Washington Square Press, New York (1984)Google Scholar
  29. Frith, C.: Making up the mind: How the brain creates our mental world. Blackwell, Malden (2007)Google Scholar
  30. Glimcher, P.W.: Indeterminacy in brain and behavior. Annual Review of Psychology 56, 25–56 (2005)CrossRefGoogle Scholar
  31. Greenspan, R.J.: An introduction to nervous systems. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2007)Google Scholar
  32. Gutnisky, D.A., Dragoi, V.: Adaptive coding of visual information in neural populations. Nature 452, 220–224 (2008)CrossRefADSGoogle Scholar
  33. Hartmann, S.: Effective Field Theories, Reductionism, and Scientific Explanation. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32, 267–304 (2001)CrossRefMathSciNetGoogle Scholar
  34. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)Google Scholar
  35. Juarrero, A.: Dynamics in action: Intentional behavior as a complex system. MIT Press, Cambridge (1999)Google Scholar
  36. Koch, C.: The quest for consciousness: A neurobiological approach. Roberts and Company, Englewood (2004)Google Scholar
  37. LeDoux, J.: Synaptic self. Viking, New York (2002)Google Scholar
  38. Longres, J.F.: Human behavior in the social environment. F.E. Peacock, Itasca, IL (1990)Google Scholar
  39. Luisi, P.L.: Emergence in chemistry: Chemistry as the embodiment of emergence. Foundations of Chemistry 4, 183–200 (2002)CrossRefGoogle Scholar
  40. Mitchell, M.: An introduction to genetic algorithms. Complex Adaptive Systems. MIT Press, Cambridge (1998)Google Scholar
  41. Murphy, N., Ellis, G.F.R.: On the moral nature of the universe. Fortress, Minneapolis (1995)Google Scholar
  42. Peacocke, A.R.: An introduction to the physical chemistry of biological organization. Oxford University Press, Oxford (1989)Google Scholar
  43. Percival, I.: Schrödinger’s quantum cat. Nature 351, 357 (1991)CrossRefADSGoogle Scholar
  44. Polkinghorne, J.: Quantum theory: A very short introduction. Oxford University Press, Oxford (2002)Google Scholar
  45. Roederer, J.G.: Information and its role in nature. Springer, Berlin (2005)MATHGoogle Scholar
  46. Scalo, J.M., Wheeler, J.C., Williams, P.: Intermittent jolts of galactic UV radiation: Mutagenetic effects. astro-ph/0104209. In: Celnikier, L.M., Van Thanh, J.T. (eds.) Frontiers of life – XIIth Rencontres de Blois. Gioi Publishers, Hanoi (2003)Google Scholar
  47. Scott, A.: Stairway to the mind. Springer, New York (1995)Google Scholar
  48. Silk, J.: The big bang. Freeman, New York (2001)Google Scholar
  49. Simon, H.A.: The Sciences of the artificial. MIT Press, Cambridge (1992)Google Scholar
  50. Tanenbaum, A.S.: Structured computer organization. Prentice Hall, Englewood Cliffs (1990)MATHGoogle Scholar
  51. Van Gulick, R.: Who’s in charge here? And who’s doing all the work? In: Heil, J., Mele, A. (eds.) Mental Causation, pp. 233–256. Clarendon, Oxford (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • George F. R. Ellis
    • 1
  1. 1.Mathematics DepartmentUniversity of Cape TownCape TownSouth Africa

Personalised recommendations