Skip to main content

Detector Models for the Quantum Time of Arrival

  • Chapter
  • First Online:
Time in Quantum Mechanics - Vol. 2

Part of the book series: Lecture Notes in Physics ((LNP,volume 789))

Abstract

Quantum particles are characterized, for a given preparation, by a fundamental stochasticity of their observable features, such as positions, momenta, energies, or times, e.g., times of arrival at a detector in time-of-flight experiments. In quantum theory the preparation stage is encoded in a wave function, whereas averages or statistical moments of the observables are calculated by a well-known prescription (the expectation value integral) from self-adjoint operators and their powers: this is at least the case for position, momentum, or energy. In fact, the entire statistical distributions are given by the square modulus of the overlap of the wave function with the corresponding eigenstates.

There is so much in that moment!

John Asherby

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Aharonov, D. Bohm, Phys. Rev. 122, 1649 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  2. Y. Aharonov, J. Oppenheim, S. Popescu, B. Reznik, W.G. Unruh, Phys. Rev. A 57, 4130 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. M.M. Ali, D. Home, A.S. Majumdar, A.K. Pan, Phys. Rev. A 75, 042110 (2007)

    Article  ADS  Google Scholar 

  4. G.R. Allcock, Ann. Phys. (N.Y.) 53, 253 (1969)

    Article  ADS  Google Scholar 

  5. G.R. Allcock, Ann. Phys. (N.Y.) 53, 283 (1969)

    ADS  Google Scholar 

  6. G.R. Allcock, Ann. Phys. (N.Y.) 53, 311 (1969)

    Article  ADS  Google Scholar 

  7. D. Alonso, R.S. Mayato, C.R. Leavens, Phys. Rev. A 66, 042108 (2002)

    Article  ADS  Google Scholar 

  8. Ch. Anastopoulos, N. Savvidou, J. Math. Phys. 47, 122106 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. P.W. Ayers, R.G. Parr, A. Nagy, Int. J. Quant. Chem. 90, 309 (2002)

    Article  Google Scholar 

  10. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon, Oxford, 1990)

    Google Scholar 

  11. R.F.W. Bader, P.M. Beddall, J. Chem. Phys. 56, 3320 (1972)

    Article  ADS  Google Scholar 

  12. O. del Barco, M. Ortuño, V. Gasparian, Phys. Rev. A 74, 032104 (2006)

    Article  ADS  Google Scholar 

  13. A.D. Baute, R.S. Mayato, J.P. Palao, J.G. Muga, I.L. Egusquiza, Phys. Rev. A 61, 022118 (2000)

    Article  ADS  Google Scholar 

  14. A.D. Baute, I.L. Egusquiza, J.G. Muga, R. Sala Mayato, Phys. Rev. A 61, 052111 (2000)

    Article  ADS  Google Scholar 

  15. A.D. Baute, I.L. Egusquiza, J.G. Muga, Phys. Rev. A 64, 012501 (2001)

    Article  ADS  Google Scholar 

  16. A.D. Baute, I.L. Egusquiza, J.G. Muga, Phys. Rev. A 64, 014101 (2001)

    Article  ADS  Google Scholar 

  17. A.D. Baute, I.L. Egusquiza, J.G. Muga, Phys. Rev. A 65, 032114 (2002)

    Article  ADS  Google Scholar 

  18. Ph. Blanchard, A. Jadczyk, Phys. Lett. A 175, 157 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ph. Blanchard, A. Jadczyk, Ann. Phys. (Lpz.) 4, 583 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ph. Blanchard, A. Jadczyk, Phys. Lett. A 203, 260 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ph. Blanchard, A. Jadczyk, Helv. Phys. Acta 69, 613 (1996)

    MathSciNet  Google Scholar 

  22. R.S. Bondurant, Phys. Rev. A 69, 062104 (2004)

    Article  ADS  Google Scholar 

  23. M. Brack, B.P. van Zyl, Phys. Rev. Lett. 86, 1574 (2001)

    Article  ADS  Google Scholar 

  24. R. Brunetti, K. Fredenhagen, Phys. Rev. A 66, 044101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993)

    MATH  Google Scholar 

  26. L. Cohen, P. Loughlin, J. Mod. Opt. 49, 539 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. L. Cohen, J. Chem. Phys. 70, 788 (1979)

    Article  ADS  Google Scholar 

  28. L. Cohen, J. Chem. Phys. 80, 4277 (1984)

    Article  ADS  Google Scholar 

  29. C.S. Chuu, F. Schreck, T.P. Meyrath, J.L. Hanssen, G.N. Price, M.G. Raizen, Phys. Rev. Lett. 95, 260403 (2005)

    Article  ADS  Google Scholar 

  30. J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68, 580 (1992)

    Article  ADS  Google Scholar 

  31. J.A. Damborenea, I.L. Egusquiza, G.C. Hegerfeldt, J.G. Muga, Phys. Rev. A 66, 052104 (2002)

    Article  ADS  Google Scholar 

  32. J.A. Damborenea, I.L. Egusquiza, G.C. Hegerfeldt, J.G. Muga, J. Phys. B: At. Mol. Opt. Phys. 36, 2657 (2003)

    Article  ADS  Google Scholar 

  33. J. Echanobe, A. del Campo, J.G. Muga, Phys. Rev. A 77, 032112 (2008)

    Article  ADS  Google Scholar 

  34. P. Facchi, S. Pascazio, Prog. Opt. 42, 147 (2001)

    Article  Google Scholar 

  35. P. Facchi, S. Pascazio, A. Scardicchio, L.S. Schulman, Phys. Rev. A 65, 012108 (2001)

    Article  ADS  Google Scholar 

  36. P. Facchi, S. Tasaki, S. Pascazio, H. Nakazato, A. Tokuse, D.A. Lidar, Phys. Rev. A 71, 022302 (2005)

    Article  ADS  Google Scholar 

  37. H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Feshbach Ann. Phys. (N.Y.) 19, 287 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  39. E.A. Galapon, R.F. Caballar, R.T. Bahague, Phys. Rev. Lett. 93, 180406 (2004)

    Article  ADS  Google Scholar 

  40. E.A. Galapon, F. Delgado, J.G. Muga, I. Egusquiza, Phys. Rev. A 74, 042107 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  41. R. Giannitrapani, Int. J. Theor. Phys. 36, 1575 (1997)

    Article  MathSciNet  Google Scholar 

  42. R. Golub, S. Felber, R. Gähler, E. Gutsmiedl, Phys. Lett. A 148, 27 (1990)

    Article  ADS  Google Scholar 

  43. A. Gozdz, M. Debicki, Phys. Atom. Nucl. 70, 529 (2007)

    Article  ADS  Google Scholar 

  44. J.J. Halliwell, Prog. Theor. Phys. 102, 707 (1999)

    Article  ADS  Google Scholar 

  45. V. Hannstein, G.C. Hegerfeldt, J.G. Muga, J. Phys. B: At. Mol. Opt. Phys. 38, 409 (2005)

    Article  ADS  Google Scholar 

  46. T.E. Hartman, J. Appl. Phys. 33, 3427 (1962)

    Article  ADS  Google Scholar 

  47. G.C. Hegerfeldt, D. Seidel, J.G. Muga, Phys. Rev. A 68, 022111 (2003)

    Article  ADS  Google Scholar 

  48. G.C. Hegerfeldt, D. Seidel, J.G. Muga, B. Navarro, Phys. Rev. A 70, 012110 (2004)

    Article  ADS  Google Scholar 

  49. G.C. Hegerfeldt, J.T. Neumann, L.S. Schulman, J. Phys. A 39, 14447 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  50. G.C. Hegerfeldt, J.T. Neumann, L.S. Schulman, Phys. Rev. A 75, 012108 (2007)

    Article  ADS  Google Scholar 

  51. G.C. Hegerfeldt, T.S. Wilser, in Classical and Quantum Systems. Proceedings of the Second International Wigner Symposium, July 1991, H.D. Doebner, W. Scherer, F. Schroeck (eds.) (World Scientific, Singapore, 1992), p. 104

    Google Scholar 

  52. G.C. Hegerfeldt, Phys. Rev. A 47, 449 (1993)

    Article  ADS  Google Scholar 

  53. G.C. Hegerfeldt, D.G. Sondermann, Quantum Semiclass. Opt. 8, 121 (1996). For a review cf. M.B. Plenio, P.L. Knight, Rev. Mod. Phys. 70, 101 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  54. D. Home, A. Whitaker, Ann. Phys. 258, 237 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  55. Y.Z. Huang, C.M. Wang, J. Phys. Condens. Matter 3, 5915 (1991)

    Article  ADS  Google Scholar 

  56. J. Kijowski, Rep. Math. Phys. 6, 361 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  57. M.S. Kim, P.L. Knight, K. Wodkiewicz, Opt. Commun. 62, 385 (1987)

    Article  ADS  Google Scholar 

  58. K. Koshino, A. Shimizu, Phys. Rep. 412, 191 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  59. L. Lamata, J. León, Concepts Phys. 2, 49 (2005)

    Google Scholar 

  60. C.R. Leavens, Phys. Rev. A 58, 840 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  61. J. León, J. Julve, P. Pitanga, F.J. de Urríes, Phys. Rev. A 61, 062101 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  62. R.D. Levine, Quantum Mechanics of Molecular Rate Processes (Oxford, London, 1969)

    Google Scholar 

  63. B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18, 756 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  64. J.G. Muga, C.R. Leavens, Phys. Rep. 338, 353 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  65. J.G. Muga, A.D. Baute, J.A. Damborenea, I.L. Egusquiza, arXiv: quant-ph/0009111

    Google Scholar 

  66. J.G. Muga, S. Brouard, R. Sala, J. Phys. Condens. Matter 4, L579 (1992)

    Article  ADS  Google Scholar 

  67. J.G. Muga, S. Brouard, D. Macías, Ann. Phys. (N.Y.) 240, 351 (1995)

    Article  ADS  Google Scholar 

  68. J.G. Muga, J.P. Palao, R. Sala, Phys. Lett. A 238, 90 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  69. J.G. Muga, R. Leavens, J.P. Palao, Phys. Rev. A 58, 4336 (1998)

    Article  ADS  Google Scholar 

  70. J.G. Muga, J.P. Palao, C.R. Leavens, Phys. Lett. A 253, 21 (1999)

    Article  ADS  Google Scholar 

  71. J.G. Muga, R. Sala, I.L. Egusquiza (eds.), Time in Quantum Mechanics, vol. 1, Lect. Notes Phys. 734 (Springer, Berlin, 2008)

    Google Scholar 

  72. J.G. Muga, D. Seidel, G.C. Hegerfeldt, J. Chem. Phys. 122, 154106 (2005)

    Article  ADS  Google Scholar 

  73. B. Navarro, I.L. Egusquiza, J.G. Muga, G.C. Hegerfeldt, J. Phys. B: At. Mol. Opt. Phys. 36, 3899 (2003)

    Article  ADS  Google Scholar 

  74. B. Navarro, I.L. Egusquiza, J.G. Muga, G.C. Hegerfeldt, Phys. Rev. A 67, 063819 (2003)

    Article  ADS  Google Scholar 

  75. H. Nazakato, T. Takazawa, K. Yuasa, Phys. Rev. Lett. 90, 060401 (2003)

    Article  ADS  Google Scholar 

  76. M.K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, A. Zeilinger, Phys. Rev. Lett. 77, 4980 (1996)

    Article  ADS  Google Scholar 

  77. J.P. Palao, J.G. Muga, S. Brouard, A. Jadczyk, Phys. Lett. A 233, 227 (1997)

    Article  ADS  Google Scholar 

  78. R.W. Robinett, Am. J. Phys. 63, 823 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  79. A. Ruschhaupt, Phys. Lett. A 250, 249 (1998)

    Article  ADS  Google Scholar 

  80. A. Ruschhaupt, in Decoherence: Theoretical, Experimental and Conceptual Problems, Ph. Blanchard et al. (eds.), Lect. Notes Phys. 538 (Springer, Berlin, 2000), p. 259

    Google Scholar 

  81. A. Ruschhaupt, J. Phys. A: Math. Gen. 35, 10429 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  82. A. Ruschhaupt, J.A. Damborenea, B. Navarro, J.G. Muga, G.C. Hegerfeldt, Europhys. Lett. 67, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  83. A. Ruschhaupt, B. Navarro, J.G. Muga, J. Phys. B: At. Mol. Opt. Phys. 37, L313 (2004)

    Article  ADS  Google Scholar 

  84. J. Ruseckas, B. Kaulakys, Phys. Rev. A 66, 052106 (2002)

    Article  ADS  Google Scholar 

  85. L.S. Schulman, Phys. Rev. A 57, 1509 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  86. A.M. Steinberg, P.G. Kwiat, R.Y. Chiao, Phys. Rev. Lett. 71, 708 (1993)

    Article  ADS  Google Scholar 

  87. E.W. Streed, J. Mun, M. Boyd, G.K. Campbell, P. Medley, W. Ketterle, D.E. Pritchard, Phys. Rev. Lett. 97, 260402 (2006)

    Article  ADS  Google Scholar 

  88. A. Tachibana, J. Chem. Phys. 115, 3497 (2001)

    Article  ADS  Google Scholar 

  89. M.W. Thomas, R.F. Snider, J. Stat. Phys. 2, 61 (1970)

    Article  ADS  Google Scholar 

  90. G. Torres-Vega, Phys. Rev. A 75, 032112 (2007)

    Article  ADS  Google Scholar 

  91. R. Werner, J. Math. Phys. 27, 793 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  92. R. Werner, Ann. Inst. Henri Poincaré 47, 429 (1987)

    Google Scholar 

  93. M. Zwanzig, J. Chem. Phys. 33, 1338 (1960)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work could not have been completed without the aid of A. del Campo, J. A. Damborenea, J. Echanobe, I. L. Egusquiza, V. Hannstein, B. Navarro, and D. Seidel. We also acknowledge "Acciones Integradas" of the German Academic Exchange Service (DAAD) and Ministerio de Educaci´on y Ciencia and additional support from the Max Planck Institute for the Physics of Complex Systems; MEC (FIS2006-10268-C03-01); and UPV-EHU (GIU07/40). AR acknowledges support by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ruschhaupt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruschhaupt, A., Muga, J.G., Hegerfeldt, G.C. (2009). Detector Models for the Quantum Time of Arrival. In: Muga, G., Ruschhaupt, A., del Campo, A. (eds) Time in Quantum Mechanics - Vol. 2. Lecture Notes in Physics, vol 789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03174-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03174-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03173-1

  • Online ISBN: 978-3-642-03174-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics