Skip to main content

Post Pauli’s Theorem Emerging Perspective on Time in Quantum Mechanics

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 789))

Abstract

In a Hilbert space setting, Pauli’s well-known theorem Pauli’s theorem asserts that no self-adjoint operator exists that is conjugate to a semibounded or discrete Hamiltonian [58]. Pauli’s argument goes as follows. Assume that there exists a self-adjoint operator T conjugate to a given Hamiltonian H, that is, [T,H]=iћ I such an operator conjugate to the Hamiltonian is known as a time operator. Since T is self-adjoint, the operator U ε=exp(–iεT) is unitary for all real number ε. Now if φE is an eigenvector of H with the eigenvalue E, then, according to Pauli, the conjugacy relation [T,H]=iћ I implies that T is a generator of energy shifts so that (E+ε)φE+e; this means that H has a continuous spectrum spanning the entire real line because ε is an arbitrary real number. Hence, the ‘inevitable’ conclusion that if the Hamiltonian is semibounded or discrete no self-adjoint time operator T will exist

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Y. Aharonov, D. Bohm, Phys. Rev. 10, 1127 (1969)

    Google Scholar 

  2. H. Atmanspacher, A. Amann, Int. J. Theor. Phys. 37, 629 (1998)

    Article  MathSciNet  Google Scholar 

  3. M. Bauer, P.A. Mello, Ann. Phys. 111, 38 (1978)

    Article  ADS  Google Scholar 

  4. A. Baute, R. Sala, J.P. Palao, J.G. Muga, I.L. Egusquiza, Phys. Rev. A 61, 022118 (2000)

    Article  ADS  Google Scholar 

  5. C. Bender, G. Dunne, Phys. Rev. D 40, 2739 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Bender, G. Dunne, Phys. Rev. D 40, 3504 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ph. Blanchard, A. Jadczyk, Helv. Phys. Acta 69, 613 (1996)

    MathSciNet  Google Scholar 

  8. P. Busch et al., Phys. Lett. A 191, 357 (1994)

    Article  ADS  Google Scholar 

  9. P. Busch et al., Annals of Phys. 237, 1 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Busch, M. Grabowski, P. Lahti, Operational Quantum Physics (Springer, Berlin, 1995)

    MATH  Google Scholar 

  11. C. Cohen-Tannoudji, Quantum Mechanics, vol. 1 (John Willey and Sons, New York, 1977)

    Google Scholar 

  12. V. Delgado, J.G. Muga, Phys. Rev. A 56, 3425 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. L.M. Delves, J.L. Mohamed, Computational Methods for Integral Equations (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  14. I.L. Egusquiza, J.G. Muga, Phys. Rev A 61, 012104 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. E. Eisenberg, L.P. Horwitz, Ad. Chem. Phys. XCIX, 245 (1997)

    Google Scholar 

  16. H. Fick, F. Engelmann, Zeitschrift fur Physik 178, 551 (1964)

    Article  ADS  Google Scholar 

  17. V. Fock Kirilov, J. Phys. (USSR) 11, 112 (1974)

    Google Scholar 

  18. B. Fuglede, Math. Scand. 20, 79 (1958)

    MathSciNet  Google Scholar 

  19. E.A. Galapon, Opts. Specs. 91, 399 (2001)

    Article  ADS  Google Scholar 

  20. E.A. Galapon, Proc. R. Soc. Lond. A 487, 451 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. E.A. Galapon, Proc. R. Soc. Lond. A 487, 2671 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. E.A. Galapon, J. Math. Phys. 45, 3180 (2004); quant-ph/0207044

    Article  ADS  MathSciNet  Google Scholar 

  23. E.A. Galapon, in Time and Matter, I.I. Bigi, M. Faessler (eds.) (World Scientific, Singapore, 2006)

    Google Scholar 

  24. E.A. Galapon, Int. J. Mod. Phys. A 21, 6351 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. E.A. Galapon, Proc. Roy. Lond. A, doi: 10.1098/rspa.2008.0278

    Google Scholar 

  26. E.A. Galapon, R. Caballar, R.T. Bahague, Phys. Rev. Lett. 93, 180406 (2004)

    Article  ADS  Google Scholar 

  27. E.A. Galapon, R. Caballar, R.T. Bahague, Phys. Rev. A 72, 062107 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. E.A. Galapon, F. Delgado, J.G. Muga, I. Egusquiza, Phys. Rev. A 72, 042107 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. E.A. Galapon, J. Nable, Conjugacy of the Confined Time of Arrival Operators, in preparation

    Google Scholar 

  30. E.A. Galapon, A. Villanueva, J. Phys. A Math. Theor. 41, 455302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Giannitrapani, Int. J. Theor. Phys. 36, 1575 (1997)

    Article  MathSciNet  Google Scholar 

  32. M.J. Gotay, J. Nonlinear Sci. 6, 469 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  33. M.J. Gotay, J. Math. Phys. 40, 2107 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  34. M.J. Gotay, J. Grabowski, Can. Math. Bull. 22, 140 (2001)

    Article  MathSciNet  Google Scholar 

  35. M.J. Gotay, J. Grabowski, H.B. Grundling, Proc. Am. Soc. 128, 237 (2000)

    Article  MathSciNet  Google Scholar 

  36. M.J. Gotay, H.B. Grundling, Rep. Math. Phys. 40, 107 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  37. M.J. Gotay, H. Grundling, C.A. Hurst, Trans. A.M.S. 348, 1579 (1996)

    Google Scholar 

  38. K. Gottfried, Quantum Mechanics, vol. 1 (Benjamin/Cummings, Reading, 1966), p. 248

    Google Scholar 

  39. B. Greene, The Fabric of the Cosmos (Vintage Books, New York, 2004)

    MATH  Google Scholar 

  40. H.J. Groenwold, Physica 12, 405 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  41. N. Grot, C. Rovelli, R.S. Tate, Phys. Rev. A 54, 4676 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  42. W. Heisenberg, Z. Phys. 43, 172 (1927)

    Article  ADS  Google Scholar 

  43. J. Hilgevoord, Am. J. Phys. 64, 1451 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  44. J. Hilgevoord, Am. J. Phys. 66, 396 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  45. A.S. Holevo, Rep. Math. Phys. 13, 379 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  46. A.S. Holevo Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982)

    MATH  Google Scholar 

  47. P.R. Holland, The Quantum Theory of Motion (Press Syndicate, Cambridge University Press, 1993)

    Book  Google Scholar 

  48. J.M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley, Reading, MA, 1968)

    MATH  Google Scholar 

  49. J. Kijowski, Rep. Math. Phys. 6, 362 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Krzyzanski, Partial Differential Equation of Second Order, vol. II (Polish Scientific Publishers, Warza, 1971)

    MATH  Google Scholar 

  51. R. Landauer, Rev. Mod. Phys. 66, 217 (1994)

    Article  ADS  Google Scholar 

  52. J. León, J. Julve, P. Pitanga, F.J. de Urríes, Phys. Rev. A 61, 062101 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  53. J.G. Muga, C.R. Leavens, Phys. Rep. 338, 353 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  54. J.G. Muga, J. Palao, P. Sala, Superlat. Microstruct. 24, 23 (1998)

    Google Scholar 

  55. J.G. Muga, R. Sala Mayato, I.L. Egusquiza (eds.), Time in Quantum Mechanics, vol. 1, Lect. Notes Phys. 734 (Springer, Berlin, 2008)

    Google Scholar 

  56. V.S. Olhovsky, E. Recami, Nuovo Cimento 22, 263 (1974)

    Article  ADS  Google Scholar 

  57. R. Omnes, in The Interpretation of Quantum Mechanics, P.W. Anderson et al. (eds.) (Princeton University Press, Harvard, 1994)

    Google Scholar 

  58. W. Pauli, in Handbuch der Physik, vol. V/1, S. Flugge (ed.) (Springer-Verlag, Berlin, 1926), p. 60

    Google Scholar 

  59. D. Park, in Fundamental Questions in Quantum Mechanics, L. Roth, A. Inomata (eds.) (Gordon and Breach Science Publishers, New York, 1984)

    Google Scholar 

  60. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publisher, Dordrecht, 1995)

    MATH  Google Scholar 

  61. Sakurai, Modern Quantum Mechanics (Addison-Wesley Publishing Company, Reading, MA, 1985)

    Google Scholar 

  62. M.D. Srinivas, R. Vijayalakshmi, Pramana 16, 173 (1981)

    Article  ADS  Google Scholar 

  63. M. Toller, Phys. Rev. A 59, 960 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  64. L. van Hove, Proc. Roy. Acad. Sci. Belgium 26, 1 (1951)

    Google Scholar 

  65. R. Vitancol, E.A. Galapon, Int. J. Mod. Phys. C 19, 821 (2008)

    Article  ADS  Google Scholar 

  66. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1955).

    Google Scholar 

  67. J. Wheeler, in Quantum Theory and Measurement, J. Wheeler, W.H. Zurek (eds.) (Princeton University Press, Princeton, 1984), p. 9

    Google Scholar 

Download references

Acknowledgments

The works reported here were funded by the National Research Council of the Philippines through Grant No. I-81-NRCP, the UP Office of the Vice Chancellor for Research andDevelopment through UP-OVCRD Outright Research Grants PNSE-050509 and PNSE-070703,and by the Office of the Vice Chancellor for Academic Affairs through UP System Grants 2004 and 2007. The theory of confined time of arrival operators was developed with the help of R. Caballar, R. Bahague, R. Vitancol, and A. Villanueva. The idea of taking the limit of the confining length to infinity arose out of a collaboration with J.G. Muga, I. Egusquiza, and F. Delgado. The author especially acknowledges J.G. Muga for his encouragements that have become a major motivation for the author's personal crusade to understand time in quantum mechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Galapon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Galapon, E.A. (2009). Post Pauli’s Theorem Emerging Perspective on Time in Quantum Mechanics. In: Muga, G., Ruschhaupt, A., del Campo, A. (eds) Time in Quantum Mechanics - Vol. 2. Lecture Notes in Physics, vol 789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03174-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03174-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03173-1

  • Online ISBN: 978-3-642-03174-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics