Skip to main content

Timescales in Quantum Open Systems: Dynamics of Time Correlation Functions and Stochastic Quantum Trajectory Methods in Non-Markovian Systems

  • Chapter
  • First Online:
Time in Quantum Mechanics - Vol. 2

Part of the book series: Lecture Notes in Physics ((LNP,volume 789))

Abstract

The dynamics of a system in interaction with another system, the later considered as a reservoir, is studied in many different domains in physics. This approach is useful not only to address fundamental questions like quantum decoherence decoherence and the measurement problem [1] but also to deal with practical and theoretical problems appearing in the emerging fields of nanotechnology nanotechnology [2, 3] and quantum computing quantum computing as well as in systems of ultracold atoms [7]. In many of these cases, the basic approximation is the Markov assumption in which there is a clear separation of the typical timescales associated with the system and the reservoir or environment. This separation of timescales, together with other assumptions like the weak coupling between the system and the reservoir, has been central in the development of several fields, in particular in quantum optics [8, 9]. However, in

Past experience, if not forgotten, is a guide for the future

Chinese proverb

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Gambetta, H. Wiseman, Phys. Rev. A 66, 012108 (2002)

    Article  ADS  Google Scholar 

  2. M. Esposito, P. Gaspard, Phys. Rev. E 76, 041134 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. C. Flindt, T. Novotny, A. Braggio, M. Sassetti, A.-Pekka Jauho, Phys. Rev. Lett. 100, 150601 (2008)

    Article  ADS  Google Scholar 

  4. D. Lidar, Phys. Rev. Lett. 100, 160506 (2008)

    Article  ADS  Google Scholar 

  5. F. Verstraete, M.M. Wolf, J.I. Cirac, arXiv:0803.1447 (2008)

    Google Scholar 

  6. B. Kraus, H.P. Büchler, S. Diehl, A. Kantian, A. Micheli, P. Zoller, Phys. Rev. A 78, 042307 (2008)

    Article  ADS  Google Scholar 

  7. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, arXiv:0803.1482 (2008)

    Google Scholar 

  8. H.J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics, Monographs Series, vol. 18 (Springer-Verlag, Berlin, 1993)

    Google Scholar 

  9. H.J. Carmichael, Statistical Methods in Quantum Optics 1. Texts and Monographs in Physics (Springer, Berlin, 1999)

    Google Scholar 

  10. B.M. Garraway, B.J. Dalton, J. Phys. B 39, S767 (2006)

    Article  ADS  Google Scholar 

  11. H.P. Breuer, F. Petruccione, Phys. Rev. E 76, 016701 (2007)

    Article  ADS  Google Scholar 

  12. B. Bellomo, R.L. Franco, G. Compagno, Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  13. C. Lazarou, G.M. Nikolopoulos, P. Lambropoulos, J. Phys. B: At. Mol. Opt. Phys. 40, 2511 (2007)

    Article  ADS  Google Scholar 

  14. E. Purcell, Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  15. D. Kleppner, Phys. Rev. Lett. 47, 233 (1981)

    Article  ADS  Google Scholar 

  16. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  17. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  18. S. John, T. Quang, Phys. Rev. A 50, 1764 (1994)

    Article  ADS  Google Scholar 

  19. B. Gaveau, L.S. Schulman, J. Phys. A: Math. Gen. 28, 7359 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Lewenstein, J. Zakrzewski, T.W. Mossberg, Phys. Rev. A 38, 808 (1988)

    Article  ADS  Google Scholar 

  21. S. Maniscalco, F. Petruccione, Phys. Rev. A 73, 12111 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  23. G.V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.G. Redfield, IBM J. Res. Dev. 1, 19 (1957)

    Article  Google Scholar 

  25. A.G. Redfield, Adv. Magn. Reson. 1, 1 (1965)

    Article  Google Scholar 

  26. P. Gaspard, M. Nagaoka, J. Chem. Phys. 111, 5676 (1999)

    Article  ADS  Google Scholar 

  27. P. Gaspard, M. Nagaoka, J. Chem. Phys. 111, 5668 (1999)

    Article  ADS  Google Scholar 

  28. R. Zwanzig, J. Chem. Phys. 33, 1338 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Nakajima, Prog. Theor. Phys. 20, 948 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  30. I. Prigogine, Non-Equilibrium Statistical Mechanics (John Wiley & Sons Inc., New York, 1962)

    MATH  Google Scholar 

  31. W.T. Strunz, T. Yu, Phys. Rev. A 69, 052115 (2004)

    Article  ADS  Google Scholar 

  32. H.P. Breuer, B. Kappler, F. Petruccione, Ann. Phys. 291, 36 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  33. J.D. Cresser, Laser Phys. 10, 337 (2000)

    Google Scholar 

  34. D. Alonso, I. de Vega, Phys. Rev. Lett. 94, 200403 (2005)

    Article  ADS  Google Scholar 

  35. C. Gardiner, P. Zoller, Quantum Noise. Springer Series in Synergetics (Springer-Verlag, Berlin, 2004)

    MATH  Google Scholar 

  36. H. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002)

    MATH  Google Scholar 

  37. M. Orszag, Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence, 2nd edn (Springer, Berlin, 2008)

    MATH  Google Scholar 

  38. P. Lambropoulos, D. Petrosyan, Fundamentals of Quantum Optics and Quantum Information (Springer, Berlin, 2006)

    Google Scholar 

  39. A. Barchielli, V. Belavkin, J. Phys. A: Math. Gen. 24, 1495 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Dalibard, Y. Castin, K. Molmer, Phys. Rev. Lett. 68, 580 (1992)

    Article  ADS  Google Scholar 

  41. R. Dum, P. Zoller, H. Ritsch, Phys. Rev. A 45, 1879 (1992)

    Article  Google Scholar 

  42. G.C. Hegerfeldt, M.B. Plenio, Phys. Rev. A 56, 2334 (1997)

    Article  Google Scholar 

  43. M.B. Plenio, P.L. Knight, Rev. Mod. Phys. 70, 101 (1998)

    Article  ADS  Google Scholar 

  44. N. Gisin, I.C. Percival, J. Phys. A: Math. Gen. 25, 5677 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  45. N. Gisin, I.C. Pecival, J. Phys. A: Math. Gen. 26, 2233 (1993)

    Article  ADS  Google Scholar 

  46. N. Gisin, I.C. Percival, J. Phys. A: Math. Gen. 26, 2245 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  47. N. Gisin, P. Knight, I. Percival, R. Thompson, D. Wilson, J. Mod. Opt. 40, 1663 (1993)

    Article  ADS  Google Scholar 

  48. H.M. Wiseman, G.J. Milburn, Phys. Rev. A 47, 1652 (1993)

    Article  ADS  Google Scholar 

  49. H.M. Wiseman, G.J. Milburn, Phys. Rev. A 47, 642 (1993)

    Article  ADS  Google Scholar 

  50. T.B.L. Kist, M. Orszag, T.A. Brun, L. Davidovich, J. Opt. B: Quantum Semicl. Opt. 1, 251 (1999)

    Article  ADS  Google Scholar 

  51. H. Breuer, F. Petruccione, Fortschr. Phys./Prog. Phys. 45, 39 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  52. W. Strunz, Phys. Lett. A 224, 25 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  53. L. Diósi, W.T. Strunz, Phys. Lett. A 235, 569 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  54. L. Diósi, N. Gisin, W. Strunz, Phys. Rev. A 58, 1699 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  55. T. Yu, L. Diósi, N. Gisin, W.T. Strunz, Phys. Rev. A 60, 91 (1999)

    Article  ADS  Google Scholar 

  56. W.T. Strunz, L. Diósi, N. Gisin, Phys. Rev. Lett. 82, 1801 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  57. W.T. Struntz, L. Diósi, N. Gisin, T. Yu, Phys. Rev. Lett. 83, 4909 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  58. M.W. Jack, M.J. Collet, Phys. Rev. A 61, 062106 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  59. H.P. Breuer, B. Kappler, F. Petruccione, Phys. Rev. A 59, 1633 (1999)

    Article  ADS  Google Scholar 

  60. H.P. Breuer, Eur. Phys. J. D 29, 105 (2004)

    Article  ADS  Google Scholar 

  61. L. Diósi, Phys. Rev. Lett. 100, 080401 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  62. H.M. Wiseman, J.M. Gambetta, (2008)

    Google Scholar 

  63. L. Diósi, Phys. Rev. Lett. Erratum 101, 149902 (2008)

    Article  ADS  Google Scholar 

  64. I. de Vega, D. Alonso, P. Gaspard, W.T. Strunz, J. Chem. Phys. 122, 124106 (2005)

    Article  ADS  Google Scholar 

  65. W. Struntz, unpublished (2001)

    Google Scholar 

  66. W.T. Strunz, Chem. Phys. 268, 237 (2001)

    Article  ADS  Google Scholar 

  67. L. Van Hove, Physica 21, 517 (1955)

    Article  MathSciNet  Google Scholar 

  68. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

  69. I. de Vega, D. Alonso, P. Gaspard, Phys. Rev. A 71, 23812 (2005)

    Article  Google Scholar 

  70. M. Lax, Phys. Rev. 129, 2342 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  71. M. Lax, Phys. Rev. A 172, 350 (1968)

    Article  ADS  Google Scholar 

  72. M. Lax, Opt. Comm. 179, 463 (2000)

    Article  ADS  Google Scholar 

  73. G.W. Ford, R.F. O’Connell, Phys. Rev. Lett. 77, 798 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  74. G.W. Ford, R.F. O’Connell, Opt. Comm. 179, 451 (2000)

    Article  ADS  Google Scholar 

  75. I. de Vega, D. Alonso, Phys. Rev. A 73, 22102 (2006)

    Article  Google Scholar 

  76. D. Alonso, I. de Vega, Phys. Rev. A 75, 52108 (2007)

    Article  ADS  Google Scholar 

  77. A.A. Budini, J. Stat. Phys. 131, 51 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  78. A.A. Budini, Phys. Rev. A 63, 012106 (2001)

    Article  ADS  Google Scholar 

  79. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  80. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions. Basic Processes and Applications (Willey Interscience, New York, 1992)

    Google Scholar 

  81. I. de Vega, D. Alonso, Phys. Rev. A 77, 043836 (2008)

    Article  ADS  Google Scholar 

  82. D. Alonso, I. de Vega, E. Hernández-Concepci ón, Comptes Rendus-Physique 8, 684 (2007)

    Article  ADS  Google Scholar 

  83. Y. Yang, S.Y. Zhu, Phys. Rev. A 62, 013805 (2000)

    Article  ADS  Google Scholar 

  84. M. Florescu, S. John, Phys. Rev. A 64, 033801 (2001)

    Article  ADS  Google Scholar 

  85. S. John, T. Quang, Phys. Rev. Lett. 74, 3419 (1995)

    Article  ADS  Google Scholar 

  86. S. John, J. Wang, Phys. Rev. Lett. 64(20), 2418 (1990)

    Article  ADS  Google Scholar 

  87. S. John, J. Wang, Phys. Rev. B 43, 12772 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

We would like to thank J.G. Muga for his kind invitation to contribute to this volume and its invaluable support. We thank H. Carmichael, G.C. Hegerfeldt, A. Ruíz, and L.S. Schulman for their comments at different stages of this work and G. Nicolis, P. Gaspard, J.I. Cirac, and W.T. Strunz for support and encouragement. This work has been supported by Ministerio de Ciencia y Tecnología of Spain (FIS2007-64018) and by the EU projects CONQUEST and SCALA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alonso, D., de Vega, I. (2009). Timescales in Quantum Open Systems: Dynamics of Time Correlation Functions and Stochastic Quantum Trajectory Methods in Non-Markovian Systems. In: Muga, G., Ruschhaupt, A., del Campo, A. (eds) Time in Quantum Mechanics - Vol. 2. Lecture Notes in Physics, vol 789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03174-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03174-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03173-1

  • Online ISBN: 978-3-642-03174-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics