Skip to main content

Bio-inspired Architecture for Visual Recognition of Humans Walking

  • Conference paper
Advances in Computational Intelligence

Abstract

In this paper we propose a bio-inspired architecture for visual recognition of humans at walking and objects that can be humans but do not describe a gait like humans at walking, based on the behaviour of simples cells in the human primary visual cortex. This architecture was tested with real sequences of images acquired in natural environments. The results show the flexibility of our propose since it helps to distinguish between these two types of moving objects, even in unknown scene conditions (bright, or background motion).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sánchez, C.C.: Neuromimetic indicators for visual perception of motion. In: 2nd International Symposium on Brain, Vision and Artificial Inteligence, vol. 103, pp. 134–143 (2007)

    Google Scholar 

  2. Gross, R., Collins, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: Int. Conference on Face and Gesture Recognition, pp. 351–356 (2002)

    Google Scholar 

  3. Cunado, D., Nixon, M., Carter, J.: Automatic extraction and description of human gait models for recognition purposes. Comput. Vis. Image Underst. 90, 1–41 (2003)

    Article  Google Scholar 

  4. Fellez, W.A., Taylor, J.G.: Establishing retinotopy by lateral-inhibition type homogeneous neural fields. Neurocomputing 48, 313–322 (2002)

    Article  Google Scholar 

  5. Giese, M., Poggio, T.: Neural mechanisms for the recognition of biological movements and acti on. Nature Reviews Neuroscience 4, 179–192 (2003)

    Article  Google Scholar 

  6. Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., Blake, R.: Brain areas involved in perception of biological motion. J. Cognitive Neuroscience 12(5), 711–720 (2000)

    Article  Google Scholar 

  7. Lappe, M., Lange, J.: The role of spatial and temporal information in biological motion perception. Advances in Cognitive Psychology 3, 419–428 (2007)

    Article  Google Scholar 

  8. Latham, P.E., Nirenberg, S.: Computing and stability in cortical networks. Neural Computation, 1385–1412 (2004)

    Google Scholar 

  9. Laxmi, V., Carter, J.N., Damper, R.I.: Biologically-inspired human motion detection. In: 10th European Symposium on Artificial Neural Networks, pp. 95–100 (2002)

    Google Scholar 

  10. Mingolla, E.: Neural models of motion integration and segmentation. Neural Networks 16, 939–945 (2003)

    Article  Google Scholar 

  11. Moga, S.: Apprendre par imitation: une nouvelle voie d’apprentissage pour les robots autonomes. PhD thesis, Université de Cergy-Pontoise, Cergy-Pontoise, France (September 2000)

    Google Scholar 

  12. Murray, M.: Gait as a total pattern of movement. American Journal in Physics and Medicine 46, 290–332 (1967)

    Google Scholar 

  13. Nikolaos, V., Zhiwei, X.: Gait recognition using radon transform and linear discriminant analysis. IEEE Image Processing 16, 731–740 (2007)

    Article  Google Scholar 

  14. Pack, C., Grossberg, S., Mingolla, E.: A neural model of smooth pursuit control and motion perception by cortical area mst. Technical Report CAS/CNR-TR-99-023, Boston University, Department of Cognitive and Neural Systems and Center for Adaptive Systems, 677 Beacon St, Boston, MA 02215 (September 2000)

    Google Scholar 

  15. Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T.: A theory of object recognition: Computations and circuits in the feedforward path of the ventral stream in primate visual cortex. Technical report, Massachusets Institute of Technology (2005)

    Google Scholar 

  16. Simoncelli, E.P., Heeger, D.J.: A model of neural responses in visual area mt. Vision Research 38(5), 743–761 (1998)

    Article  Google Scholar 

  17. Zemel, R.S., Sejnowski, T.J.: A model for encoding multiple object motions and self-motion in area mst of primate visual cortex. The Journal of Neurosciences 18(1), 531–547 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez Orellana, P.L., Castellanos Sánchez, C., del Angel-Guerrero, E., Martínez-Arenas, T. (2009). Bio-inspired Architecture for Visual Recognition of Humans Walking. In: Yu, W., Sanchez, E.N. (eds) Advances in Computational Intelligence. Advances in Intelligent and Soft Computing, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03156-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03156-4_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03155-7

  • Online ISBN: 978-3-642-03156-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics