Skip to main content

Gene Regulatory Network Reconstruction of P38 MAPK Pathway Using Ordinary Differential Equation with Linear Regression Analysis

  • Conference paper
Advances in Computational Intelligence

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 116))

Abstract

P38 MAPK is one of the most important central regulatory proteins that can respond extra environmental stresses. It can activate or inhibit many other genes, which can lead some disease, such as cancers or inflammations etc. We proposed a new differential equation model using linear regression analysis to calculate the weight values of the Genetic Regulatory Networks to simulate the P38 MAPK pathway in Genetic level. The results of the network are reasonable. We can investigate the P38 MAPK pathway some extra hypotheses from the result model, and provide biologists optimal designs for further experiments of disease researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, J., Salojin, K.V., Gao, J.X., et al.: p38 mitogen-activated protein kinase mediates signal integration of TCR/CD28 costimulation in primary murine T cells. The Journal of Immunology 162, 3819–3829 (1999)

    Google Scholar 

  2. Abe, J.I., Kusuhara, M., Richard, J., et al.: Big Mitogen-activated Protein Kinase 1 (BMK1) Is a Redox-sensitive Kinase. The Journal of Biological Chemistry 271(28), 16586–16589 (1996)

    Article  Google Scholar 

  3. Galcheva-Gargova, Z., Derijard, B., Wu, I.H., et al.: An osmosensing signal transduction pathway in mammalian cells. Science 265, 806–808 (1994)

    Article  Google Scholar 

  4. Davis, R.J.: The mitogen-activated protein kinase signal transduction pathway. The Journal of Biological Chemistry 286, 14553–14556 (1993)

    Google Scholar 

  5. Han, J., Lee, J.D., Bibbs, L., et al.: A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994)

    Article  Google Scholar 

  6. Nick, J.A., Young, S.K., Brown, K.K., et al.: Role of p38 Mitogen-Activated Protein Kinase in a Murine Model of Pulmonary Inflammation. The Journal of Immunology 164, 2151–2159 (2000)

    Google Scholar 

  7. Bradham, C., McClay, D.R.: p38 MAPK in development and cancer. Cell Cycle 5(8), 824–828 (2006)

    Google Scholar 

  8. Drulhe, S., Ferrari-Trecate, G., de Jong, H.: The Switching Threshold Reconstruction Problem for Piecewise-Affine Models of Genetic Regulatory Networks. IEEE Transactions on Circuits And Systems I-Regular Papers 29, 153–165 (2008)

    Google Scholar 

  9. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacific Symposium on Biocomputing 4, 17–28 (1999)

    Google Scholar 

  10. Pe’er, D., Nachman, I., Linial, M., et al.: Using bayesian networks to analyze expression data. J.Comput. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  11. Steuer, R., Kurths, J., Daub, C.O., et al.: The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(suppl. 2), 231–240 (2002)

    Google Scholar 

  12. D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000)

    Article  Google Scholar 

  13. Wuensche, A.: Discrete Dynamics Lab (DDLab), http://www.ddlab.com/

  14. Yu, J., Smith, V.A., Wang, P.P., et al.: Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004)

    Article  Google Scholar 

  15. Basso, K., Margolin, A.A., Stolovitzky, G., et al.: Reverse engineering of regulatory networks in human B. Cells 37, 382–390 (2005)

    Google Scholar 

  16. di Bernardo, D., Thompson, M., Gardner, T., et al.: Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol. 23, 377–383 (2005)

    Article  Google Scholar 

  17. Hucka, M., Finney, A., Bornstein, B.J., et al.: Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML). project. IEE Systems Biology 1(1), 41–53 (2004)

    Article  Google Scholar 

  18. Shannon, P., Markiel, A., Ozier, W., et al.: Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 13, 2498–2504 (2003)

    Article  Google Scholar 

  19. Monga, M., Sausville, E.A.: Developmental Therapeutics Program at the NCI: molecular target and drug discovery process. Nature 2, 0887–6924 (2002)

    Google Scholar 

  20. The Novartis data U95, http://dtpsearch.ncifcrf.gov/FTP/WEB_DATA_NOVARTIS.ZIP

  21. The data used in this paper, http://uploadingit.com/files/download/1075417_srm3y/Data.xls

  22. The P38 MAPK provided by BioCarta, http://www.biocarta.com/pathfiles/h_P38MAPKPATHWAY.asp

  23. Krizman, D.B., Wagner, L., Lash, A., et al.: The Cancer Genome Anatomy Project: EST Sequencing and the Genetics of Cancer Progression. Neoplasia 1, 101–106 (1999)

    Article  Google Scholar 

  24. Samaranayake, M., Ji, H., Ainscough, J.: Force directed graph drawing algorithms for Macro cell placement. Lecture Notes in Engineering and Computer Science, vol. S I-III, pp. 222–227 (2008)

    Google Scholar 

  25. Kendal, J.R., Rendell, L., Pike, T.W., et al.: Nine-spined sticklebacks deploy a hill-climbing social learning strategy. Behavioral Ecology 20, 238–244 (2009)

    Article  Google Scholar 

  26. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Researich 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  27. Holt, J.S.: Data analysis with SPSS: A first course in applied statistics. Teaching Sociology 36, 285–287 (2008)

    Article  Google Scholar 

  28. The code of this paper, http://uploadingit.com/files/1076574_i3moj/Codes.zip

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, M., Liu, GX., Wang, H., Zhou, CG. (2009). Gene Regulatory Network Reconstruction of P38 MAPK Pathway Using Ordinary Differential Equation with Linear Regression Analysis. In: Yu, W., Sanchez, E.N. (eds) Advances in Computational Intelligence. Advances in Intelligent and Soft Computing, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03156-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03156-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03155-7

  • Online ISBN: 978-3-642-03156-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics