Skip to main content

A Continuous-Time Recurrent Neurofuzzy Network for Black-Box Modeling of Insulin Dynamics in Diabetic Type-1 Patients

  • Conference paper
Advances in Computational Intelligence

Abstract

Diabetic Type-1 patients have no pancreatic insulin secretion, and an insulin therapy is prescribed for them to regulate glucose absorption. There are several self monitoring devices for glucose, but not for insulin, which must be known and kept within certain limits to avoid damages to the body. Currently, it is possible to obtain real-time glucose measurements, so control schemes can be designed to control the glucose level using the insulin rate injected to the patient. In this work we present a black-box modeling of the insulin dynamics in different in silico patients using a recurrent neural network that could be used for on-line monitoring of the insulin concentration for a better treatment. The inputs for the identification is the rate of insulin (μU/dl/min) applied to the patient, and blood glucose concentration. The output is insulin concentration (μU/ml) present in the blood stream. The model is validated through numerical simulations.

This work is partly supported by UNAM-PAPIIT IN120009. The work of Marcos A. González Olvera and Ana G. Gallardo is supported by CONACyT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergman, R.N., Ider, Y.Z., Bowden, C.R., Cobelli, C.: Quantitative estimation of insulin sensitivity. Am. J. Physiology, Endocrinology and Metabolism 235, E667–E677 (1979)

    Google Scholar 

  2. Bolie, V.: Coefficients of normal blood glucose regulation. Journal of Applied Physiology 16, 783–788 (1961)

    Google Scholar 

  3. Sorensen, J.T.: A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. Ph.D. dissertation, Massachusetts Institute of Technology. Dept. of Chemical Engineering (1985)

    Google Scholar 

  4. Wilinska, M., Chassin, L.J., Schaller, H., Schaupp, L., Pieber, T., Hovorka, R.: Insulin kinetics in type-1 diabetes: continuous and bolus deliveryinsulin kinetics in type-1 diabetes: continuous and bolus delivery. IEEE Transactions on Biomedical Engineering 52(1), 3–12 (2005)

    Article  Google Scholar 

  5. Man, C.D., Rizza, R., Cobelli, C.: Meal simulation model of the glucose-insulin system. IEEE Transaction on Biomedial Engineering 54, 1740–1749 (2007)

    Article  Google Scholar 

  6. Narendra, K., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Tras. Neural Networks 1, 4–27 (1990)

    Article  Google Scholar 

  7. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Con. Signal Syst. 2, 303–314 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jang, J.-S.R.: Anfis: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23, 665–685 (1993)

    Article  Google Scholar 

  9. Juang, C.-F.: A tsk-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Transactions of Fuzzy Systems 10(2), 155–170 (2002)

    Article  MathSciNet  Google Scholar 

  10. Hopfield, J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences 79(8), 2554–2558 (1982)

    Google Scholar 

  11. Gorrini, V., Bersini, H.: Recurrent fuzzy systems. In: Proc. IEEE Int. Conference on Fuzzy Systems, pp. 193–198 (1994)

    Google Scholar 

  12. Back, A.D., Tsoi, A.C.: A time series modeling methodology using fir and iir synapses. In: Proc. Workshop on Neural Networks for Statistical and Economic Data, pp. 187–194 (1990)

    Google Scholar 

  13. Mastorocostas, P.A., Theocharis, J.B.: A recurrent fuzzy-neural model for dynamic system identification. IEEE Trans. onf Systems, Man and Cybernetics - Part B: Cybernetics 32(2), 176–190 (2002)

    Article  Google Scholar 

  14. Poznyak, A., Sanchez, E., Yu, W.: Differential Neural Networks for Robust Nonlinear Control: Identification, State Estimation and Trajectory Tracking. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  15. Gonzalez-Olvera, M.A., Tang, Y.: Identification and Control of Nonlinear Dynamic Systems via a Constrained Input-Output Neurofuzzy Network. In: Tao, G., Sun, J. (eds.) Advances in Control Systems Theory and Applications (2008)

    Google Scholar 

  16. Nelles, O.: Nonlinear System Identification. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  17. Werbos, P.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  18. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation 2(1), 270–280 (1989)

    Article  Google Scholar 

  19. Gonzalez-Olvera, M.A., Tang, Y.: Identification of a class of nonlinear systems by a continuous-time recurrent neurofuzzy network. In: American Control Conference (to be published, 2009)

    Google Scholar 

  20. Guyton, A., Hall, J.: Textbook of Medical Physiology. W. B. Saunders, Philadelphia (2000)

    Google Scholar 

  21. Asociation, A.D.: Standards of Medical Care in Diabetes. ADA (2009)

    Google Scholar 

  22. Gallardo-Hernandez, G., Fridman, L., Islas-Andrade, S., Shtessel, Y.: Quasi-continuous high order sliding modes controllers applied to glucose-insulin regulatory system models. In: Proceedings of Decision and Control Conference, December 9-11 (2008)

    Google Scholar 

  23. Kaveh, P., Shtessel, Y.: Blood glucose regulation using higher-order sliding mode control. Int. J. of Robust and Nonlinear Control 18, 557–569 (2007)

    Article  MathSciNet  Google Scholar 

  24. Hovorka, R., Canonico, V., Chassin, L., Haueter, U., Massi-Benedetti, M., Federici, M., Pieber, T., Schaller, H., Schaupp, L., Vering, T., Wilinska, M.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurements 25, 905–920 (2004)

    Article  Google Scholar 

  25. Parker, R., Doyle III, F., Ward, J., Peppas, N.: Robust h∞ glucose control in diabetes using a physiological model. American Institute of Chemical Engineers (AIChE) 46(12), 2537–2549 (2004)

    Google Scholar 

  26. Reed Larsen, P., Kronenberg, H.M., Melmed, S., Polonsky, K.S.: Williams Textbook of Endocrinology. Sanuders, USA (2003)

    Google Scholar 

  27. Marino, R.: Adaptive observers for single output nonlinear systems. IEEE Transactions on Automatic Control 35(9), 1054–1058 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhang, G., Patwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 14, 35–62 (1998)

    Article  Google Scholar 

  29. Zhang, Q.: Adaptive observer for multiple-input-multiple-output (MIMO) lineartime-varying systems. IEEE Transactions on Automatic Control 47(3), 525–529 (2002)

    Article  Google Scholar 

  30. Bastin, G., Gevers, M.: Stable adaptive observers for nonlinear time-varying systems. IEEE Transactions on Automatic Control 33(7), 650–658 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  31. Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3(3), 32–57 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bezdek, J.: Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, Norwell (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González-Olvera, M.A., Gallardo-Hernández, A.G., Tang, Y., Revilla-Monsalve, M.C., Islas-Andrade, S. (2009). A Continuous-Time Recurrent Neurofuzzy Network for Black-Box Modeling of Insulin Dynamics in Diabetic Type-1 Patients. In: Yu, W., Sanchez, E.N. (eds) Advances in Computational Intelligence. Advances in Intelligent and Soft Computing, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03156-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03156-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03155-7

  • Online ISBN: 978-3-642-03156-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics