Advertisement

Multiple Description Scalable Coding for Video Transmission over Unreliable Networks

  • Roya Choupani
  • Stephan Wong
  • Mehmet R. Tolun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5657)

Abstract

Developing real time multimedia applications for best effort networks such as the Internet requires prohibitions against jitter delay and frame loss. This problem is further complicated in wireless networks as the rate of frame corruption or loss is higher in wireless networks while they generally have lower data rates compared to wired networks. On the other hand, variations of the bandwidth and the receiving device characteristics require data rate adaptation capability of the coding method. Multiple Description Coding (MDC) methods are used to solve the jitter delay and frame loss problems by making the transmitted data more error resilient, however, this results in reduced data rate because of the added overhead. MDC methods do not address the bandwidth variation and receiver characteristics differences. In this paper a new method based on integrating MDC and the scalable video coding extension of H.264 standard is proposed. Our method can handle both jitter delay and frame loss, and data rate adaptation problems. Our method utilizes motion compensating scheme and, therefore, is compatible with the current video coding standards such as MPEG-4 and H.264. Based on the simulated network conditions, our method shows promising results and we have achieved up to 36dB for average Y-PSNR.

Keywords

Scalable Video Coding Multiple Description Coding Multimedia Transmission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conklin, G., Greenbaum, G., Lillevold, K., Lippman, A., Reznik, Y.: Video Coding for Streaming Media Delivery on the Internet. IEEE Transaction on Circuits and Systems for Video Technology (March 2001)Google Scholar
  2. 2.
    Andreopoulos, Y., van der Schaar, M., Munteanu, A., Barbarien, J., Schelkens, P., Cornelis, J.: Fully-scalable Wavelet Video Coding using in-band Motion-compensated Temporal Filtering. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 417–420 (2003)Google Scholar
  3. 3.
    Ohm, J.: Advances in Scalable Video Coding. Proceedings of the IEEE 93(1) (January 2005)Google Scholar
  4. 4.
    Goyal, V.K.: Multiple Description Coding: Compression Meets the Network. Signal Processing Magazine 18(5), 74–93 (2001)CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Reibman, A.R., Shunan, L.: Multiple Description Coding for Video Delivery. Proceedings of IEEE 93(1) (January 2005)Google Scholar
  6. 6.
    Puri, R., Ramchandran, K.: Multiple Description Source Coding using Forward Error Correction Codes. Signals, Systems, and Computers 1, 342–346 (1999)Google Scholar
  7. 7.
    Venkataramani, R., Kramer, G., Goyal, V.K.: Multiple Description Coding with many Channels. IEEE Transaction on Information Theory 49(9), 2106–2114 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chang, S.K., Sang, L.: Multiple Description Coding of Motion Fields for Robust Video Transmission. IEEE Transaction on Circuits and Systems for Video Technology 11(9), 999–1010 (2001)CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Lin, S.: Error-resilient Video Coding using Multiple Description Motion Compensation. IEEE Transaction on Circuits and Systems for Video Technology 12(6), 438–452 (2002)CrossRefGoogle Scholar
  10. 10.
    Xuguang, Y., Ramchandran, K.: Optimal Subband Filter Banks for Multiple Description Coding. IEEE Transaction on Information Theory 46(7), 2477–2490 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Tillo, T., Olmo, G.: A Novel Multiple Description Coding Scheme Compatible with the JPEG 2000 Decoder. IEEE Signal Processing Letters 11(11), 908–911 (2004)CrossRefGoogle Scholar
  12. 12.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC Video Coding Standard. IEEE Transaction on Circuits and Systems for Video Technology 13(7) (July 2003)Google Scholar
  13. 13.
    Schwarz, H., Marpe, D., Wiegand, T.: Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. IEEE Transaction on Circuits and Systems for Video (2007)Google Scholar
  14. 14.
    Hewage, C., Karim, H., Worrall, S., Dogan, S., Kondoz, A.: Comparison of Stereo Video Coding Support in MPEG-4 MAC, H.264/AVC and H.264/SVC. In: Proceeding of the 4th Visual Information Engineering Conference, London (July 2007)Google Scholar
  15. 15.
    Mohr, A.E., Riskin, E.A., Ladner, R.E.: Unequal Loss Protection: Graceful Degradation of Image Quality over Packet Erasure Channels through Forward Error Correction. IEEE Journal of Selected Areas in Communications 18(6), 819–828 (2000)CrossRefGoogle Scholar
  16. 16.
    Franchi, N., Fumagalli, M., Lancini, R., Tubaro, S.: A Space Domain Approach for Multiple Description Video Coding. In: ICIP 2003, vol. 2, pp. 253–256 (2003)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Roya Choupani
    • 1
    • 2
  • Stephan Wong
    • 1
  • Mehmet R. Tolun
    • 2
  1. 1.Computer Engineering DepartmentTUDelftDelftThe Netherlands
  2. 2.Computer Engineering DepartmentC̱ankaya UniversityAnkaraTurkey

Personalised recommendations