Skip to main content

Models as Tools to Aid Thinking

  • Chapter
  • First Online:
Towards a Theory of Thinking

Part of the book series: On Thinking ((ONTHINKING))

Abstract

We offer a brief synoptical discussion of some major modeling methodologies and discuss these from a number of complementary dimensions of modeling and thinking: how can models aid our thinking, what are their different characteristics, how is modeling affected by the selection of features, how far is the reach of mappings and what in addition can be delivered by dynamical systems, how to cope with uncertainty, what are mechanisms of optimal inference, and how is modeling connected with learning? We conclude with a brief discussion of some inherent limitations of any model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this time we are using discrete time steps and, therefore, have the “difference equation” analog of the continuous-time differential equation (8).

  2. 2.

    We omit the discussion of measure-theoretic fine points admitting the happening or nonhappening of events even if their probability is zero or one, as long as such “exceptions” are sufficiently seldom so as not to affect any “expectation values,” such as averages etc.

  3. 3.

    It may also happen that the new probability distribution p(x|c) is more spread out than the “old” one p(x): this possibility reflects the fact that a symptom can also be “confusing.”

  4. 4.

    We intentionally use for the models the same letter θ that we previously used for the model parameters to indicate that we mostly think of parameterized models, for which model identity and the associated parameter value can be identified.

References

  • Duch W, Wieczorek T, Biesiada J, Blachnik M (2004) Comparison of feature ranking methods based on information entropy. Proc IEEE Int Joint Conf Neural Netw 2:1415-1419

    Google Scholar 

  • Alligood KT, Sauer TD, Yorke JA (2000) Chaos. An introduction to dynamical systems. Springer, Berlin

    Google Scholar 

  • Bartholomew DJ (1965) A comparison of some bayesian and frequentist inferences. Biometrika 52(1/2):19-35

    Article  Google Scholar 

  • Berger J (1985) Statistical decision theory and Bayesian analysis. Springer, New York

    Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    Google Scholar 

  • Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Stat Sci 10:273-304

    Article  Google Scholar 

  • Dörner D (1990) The logic of failure. Philos Trans R Soc Lond B 327:463-473

    Article  Google Scholar 

  • Edwards AWF (1972) Likelihood. Cambridge University Press, Cambridge

    Google Scholar 

  • Feigenbaum MJ (1980) Universal behavior in nonlinear systems. Los Alamos Sci 1:4-27

    Google Scholar 

  • Freund Y, Seung S, Shamir E, Tishby N (1997) Selective sampling using the query by committee algorithm. Mach Learn 28:133-168

    Article  Google Scholar 

  • Gallant AR (1986) Nonlinear statistical models. Wiley, New York

    Google Scholar 

  • Gutierrez F, Garcia-Madruga JA, Moreno S, Carriedo N, Johnson-Laird PN (2001) Are conjunctive inferences easier than disjunctive inferences? A comparison of rules and models. Q J Exp Psychol 54A:613-632

    Google Scholar 

  • Harrel FE (2001) Regression modeling strategies, Springer Series in Statistics. Springer, Berlin

    Google Scholar 

  • Haschke R, Steil J (2005) Input space bifurcation manifolds of recurrent neural networks. Neurocomputing 64:25-38

    Article  Google Scholar 

  • Hasenjäger M, Ritter H (1998) Active Learning with local models. Neural Process Lett 7:107-117

    Article  Google Scholar 

  • Heidemann G, Ritter H (2008) Compression for visual pattern recognition. IEEE ISCCSP Conf Proc:1520-1523

    Google Scholar 

  • Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  • Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ (2008) Improving fluid intelligence with training on working memory. PNAS 105(19):6829-6833

    Article  CAS  PubMed  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620-630

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, Springer Series in Statistics, 2nd edn. Springer, Berlin

    Google Scholar 

  • Kaplan D, Glass L (1995) Understanding nonlinear dynamics. Springer, Berlin

    Google Scholar 

  • Karlin S, Taylor HM (1998) An Introduction to stochastic modeling, 3rd edn. Academic, New York

    Google Scholar 

  • Kay SM (1993) Fundamentals of statistical signal processing. Prentice Hall, New Jersey

    Google Scholar 

  • Khinchin (1957) Mathematical foundations of information theory. Dover Books, New York

    Google Scholar 

  • Kohonen T (2001) Self-organizing maps. Springer, Berlin

    Google Scholar 

  • Lauritzen SL (1996) Graphical models. Oxford Statistical Science Series. Oxford University Press, Oxford

    Google Scholar 

  • MacKay DJC (2003) Information theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge

    Google Scholar 

  • Meinicke P, Klanke S, Memisevic R, Ritter H (2005) Principal surfaces from unsupervized kernel regression. IEEE PAMI 27:1379-1391

    Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81-97

    Article  CAS  PubMed  Google Scholar 

  • Minsky M, Papert SA (1988) Perceptrons: expanded edition. MIT, Cambridge, MA

    Google Scholar 

  • Nicolelis M (2001) Actions from thoughts. Nature 409:403-407

    Article  CAS  PubMed  Google Scholar 

  • Pearson JE (1993) Complex patterns in a simple system. Science 261:189-190

    Article  CAS  PubMed  Google Scholar 

  • Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    Google Scholar 

  • Ritter H, Martinetz T, Schulten K (1992) Neural computation and self-oranizing maps. Addison Wesley, Boston, MA

    Google Scholar 

  • Ritter H, Kaper M, Lenhardt A, Ontrup J (2006) Making human-machine interfaces more brain-adeqate. In Brain-inspired It III (International Congress Series), pp 15-21

    Google Scholar 

  • Roweis S, Saul LK (2000) Nonlinear dimension reduction by locally linear embedding. Science 290:2323-2326

    Article  CAS  PubMed  Google Scholar 

  • Schölkopf B, Smola AJ (2002) Learning with kernels. MIT, Cambridge, MA

    Google Scholar 

  • Shawe-Taylor J, Cristianini N (2000) Support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Google Scholar 

  • Special Issue on Variable and Feature Selection. J Mach Learn Res 3 (2003)

    Google Scholar 

  • Sternberg RJ, Frensch PA (1991) Complex problem solving: principles and mechanisms. Lawrence Erlbaum, New Jersey

    Google Scholar 

  • Suder K, Wörgötter F, Wennekers T (2001) Neural field model of receptive field restructuring in primary visual cortex. Neural Comput 13:139-159

    Article  CAS  PubMed  Google Scholar 

  • Turing AM (1990) The chemical basis of morphogenesis. Bull Math Biol 52(1-2):153-197 (reprint of the original 1953 paper)

    Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, Berlin

    Google Scholar 

  • Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San Fransisco

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritter, H. (2010). Models as Tools to Aid Thinking. In: Glatzeder, B., Goel, V., Müller, A. (eds) Towards a Theory of Thinking. On Thinking. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03129-8_23

Download citation

Publish with us

Policies and ethics