Skip to main content

Cortical Connectivity: The Infrastructure of Thoughts

  • Chapter
  • First Online:
Towards a Theory of Thinking

Part of the book series: On Thinking ((ONTHINKING))

  • 2389 Accesses

Abstract

This chapter rests on the following, somewhat speculative, considerations: Thinking is the association of learnt and perceived sensory-motor items, with motivations and emotions, in variable proportions, into a form (Gestalt). Cerebral cortex thinks. Thoughts are implemented by cortical neuronal assemblies, usually distributed over the two hemispheres. Cortico-cortical connections implement the associative power of cerebral cortex, i.e., neuronal assemblies. The computations performed by cortical neuronal assemblies are identical irrespective of the location of their neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles M (1991) Corticonics neural circuits of the cerebral cortex. Cambridge University Press, Cambridge

    Google Scholar 

  • Aggoun-Zouaoui D, Innocenti GM (1994) Juvenile visual callosal axons in kittens display origin- and fate-related morphology and distribution of arbors. Eur J Neurosci 6:1846-1863

    Article  CAS  PubMed  Google Scholar 

  • Aggoun-Zouaoui D, Kiper DC, Innocenti GM (1996) Growth of callosal terminal arbors in primary visual areas of the cat. Eur J Neurosci 8:1132-1148

    Article  Google Scholar 

  • Bosking WH, Zhang Y, Schofield B, et al (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17:2112-2127

    Google Scholar 

  • Caminiti R, Innocenti GM (1981) The postnatal development of somatosensory callosal connections after parietal lesions of somatosensory areas. Exp Brain Res 42:53-62

    Article  CAS  PubMed  Google Scholar 

  • Carmeli C, Knyazeva MG, Innocenti GM et al (2005) Assessment of EEG synchronization based on state-space analysis. Neuroimage 25:339-354

    Article  PubMed  Google Scholar 

  • Carmeli C, Lopez-Aguado L, Schmidt KE et al (2007) A novel interhemispheric interaction: modulation of neuronal cooperativity in the visual areas. PLoS ONE 2:e1287

    Article  PubMed  Google Scholar 

  • Eckhorn R, Bauer R, Jordan W et al (1988) Coherent oscillations: a mechanism for feature linking in the visual cortex? Biol Cybern 60:121-130

    Article  CAS  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1-47

    Article  CAS  PubMed  Google Scholar 

  • Foucault M (1967) Le mots et le choses (Italian translation). Rizzoli, Milano

    Google Scholar 

  • Gray CM, König P, Engel AK et al (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334-337

    Article  CAS  PubMed  Google Scholar 

  • Guillery RW (1995) Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J Anat 187:583-592

    PubMed  Google Scholar 

  • Houzel J-C, Milleret C, Innocenti GM (1994) Morphology of callosal axons interconnecting areas 17 and 18 of the cat. Eur J Neurosci 6:898-917

    Article  CAS  PubMed  Google Scholar 

  • Innocenti GM (1986) General organization of callosal connections in the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5. Plenum, New York

    Google Scholar 

  • Innocenti GM (1995) Exuberant development of connections, and its possible permissive role in cortical evolution. TINS 18:397-402

    CAS  PubMed  Google Scholar 

  • Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Neurosci Rev 6:955-965

    Article  CAS  Google Scholar 

  • Innocenti GM, Lehmann P, Houzel J-C (1994) Computational structure of visual callosal axons. Eur J Neurosci 6:918-935

    Article  CAS  PubMed  Google Scholar 

  • Innocenti GM, Ansermet F, Parnas J (2003) Schizophrenia, neurodevelopment and Corpus Callosum. Mol Psychiatry 8:261-274

    Article  CAS  PubMed  Google Scholar 

  • Kennedy H, Meissirel C, Dehay C (1991) Callosal pathways and their compliancy to general rules governing the organization of corticocortical connectivity. In: Dreher B, Robinson S (eds) Vision and visual dysfunction, vol 3: Neuroanatomy of the visual pathways and their development. Macmillan, London

    Google Scholar 

  • Kiper DC, Knyazeva MG, Tettoni L et al (1999) Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets. J Neurophysiol 82:3082-3094

    CAS  PubMed  Google Scholar 

  • Knyazeva MG, Kiper DC, Vildavsky VJ et al (1999) Visual stimulus-dependent changes in interhemispheric EEG coherence in humans. J Neurophysiol 82:3095-3107

    CAS  PubMed  Google Scholar 

  • Knyazeva MG, Fornari E, Meuli R et al (2006) Imaging of a synchronous neuronal assembly in the human visual brain. Neuroimage 29:593-604

    Article  PubMed  Google Scholar 

  • Lewis-Williams D (2002) The mind in the cave. Thames and Hudson, London

    Google Scholar 

  • Lüscher HR, Shiner JS (1990) Simulation of action potential propagation in complex terminal arborizations. Biophys J 58:1389-1399

    Article  PubMed  Google Scholar 

  • Makarov VA, Schmidt KE, Castellanos NP, et al. (2007) Stimulus-dependent interaction between the Visual Areas 17 and 18 of the two hemispheres of the Ferret (Mustela putorius). Cereb Cortex 18:1951-1960

    Google Scholar 

  • Maldonado P, Babul C, Singer W et al (2008) Synchronization of neuronal responses in primary visual cortex of monkeys viewing natural images. J Neurophysiol 100:1523-1532

    Article  PubMed  Google Scholar 

  • Manger PR, Kiper D, Masiello I et al (2002) The representation of the visual field in three extrastriate areas of the ferret (Mustela putorius) and the relationship of retinotopy and field boundaries to callosal connectivity. Cereb Cortex 12:423-437

    Article  PubMed  Google Scholar 

  • Mitelman SA, Torosjan Y, Newmark RA et al (2007) Internal capsule, corpus callosum and long associative fibers in good and poor outcome schizophrenia: a diffusion tensor imaging survey. Schizophrenia Res 92:211-224

    Article  Google Scholar 

  • Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT, Cambridge and London

    Google Scholar 

  • Parnas I, Segev I (1979) A mathematical model for conduction of action potentials along bifurcating axons. J Physiol 295:323-343

    CAS  PubMed  Google Scholar 

  • Restrepo CE, Manger PR, Spenger C et al (2003) Immature cortex lesions alter retinotopic maps and interhemispheric connections. Ann Neurol 54:51-65

    Article  PubMed  Google Scholar 

  • Rock I (1995) Perception. Scientific American Library, Freeman, New York

    Google Scholar 

  • Scannell JW, Young MP (1993) The connectional organization of neural systems in the cat cerebral cortex. Curr Biol 3:191-200

    Article  CAS  PubMed  Google Scholar 

  • Schmidt KE, Goebel R, Löwel S et al (1997) The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in the primary visual cortex. Eur J Neurosci 9:1083-1089

    Article  CAS  PubMed  Google Scholar 

  • Stephan KE, Hilgetag C, Burns GAPC et al (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B 355:111-126

    Article  CAS  Google Scholar 

  • Tettoni L, Gheorghita-Baechler F, Bressoud R et al (1998) Constant and variable of axonal phenotype in cerebral cortex. Cereb Cortex 8:543-552

    Article  CAS  PubMed  Google Scholar 

  • Zufferey PD, Jin F, Nakamura H et al (1999) The role of pattern vision in the development of cortico-cortical connections. Eur J Neurosci 11:2669-2688

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Innocenti, G.M. (2010). Cortical Connectivity: The Infrastructure of Thoughts. In: Glatzeder, B., Goel, V., Müller, A. (eds) Towards a Theory of Thinking. On Thinking. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03129-8_22

Download citation

Publish with us

Policies and ethics