Connecting the Dots: Molecular Machinery for Distributed Robotics

  • Yuriy Brun
  • Dustin Reishus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5347)


Nature is considered one promising area to search for inspiration in designing robotic systems. Some work in swarm robotics has tried to build systems that resemble distributed biological systems and inherit biology’s fault tolerance, scalability, dependability, and robustness. Such systems, as well as ones in the areas of active self-assembly and amorphous computing, typically use relatively simple components with limited computation, memory, and computational power to accomplish complex tasks, such as forming paths in the presence of obstacles. We demonstrate that such tasks can be accomplished in the well-studied tile assembly model, a model of molecular self-assembly that is strictly simpler than other biologically-inspired models. Our systems use a small number of distinct components to find minimal-length paths in time linear in the length of the path while inheriting scalability and fault tolerance of the underlying natural process of self-assembly.


Tile System Molecular Machinery Simple Component Swarm Robotic Formal Mathematical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications of the ACM 43(5), 74–82 (2000)CrossRefGoogle Scholar
  2. 2.
    Arbuckle, D.J., Requicha, A.A.G.: Active self-assembly. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2004), New Orleans, LA, USA, pp. 896–901 (April 2004)Google Scholar
  3. 3.
    Clement, L., Nagpal, R.: Self-assembly and self-repairing topologies. In: Proceedings of the Workshop on Adaptability in Multi-Agent Systems, RoboCup Australian Open (January 2003)Google Scholar
  4. 4.
    Kondacs, A.: Biologically-inspired self-assembly of two-dimensional shapes using global-to-local compilation. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico (August 2003)Google Scholar
  5. 5.
    Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape Using Biologically-Inspired Local Interactions and Origami Mathematics. PhD thesis, Massachussetts Institute of Technology, Cambridge, MA, USA (June 2001)Google Scholar
  6. 6.
    Nagpal, R., Shrobe, H.E., Bachrach, J.: Organizing a global coordinate system from local information on an ad hoc sensor network. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Butera, W.J.: Programming a Paintable Computer. PhD thesis, Massachussetts Institute of Technology, Cambridge, MA, USA (February 2002)Google Scholar
  8. 8.
    Klavins, E.: Programmable self-assembly. Control Systems Magazine 24(4), 43–56 (2007)CrossRefGoogle Scholar
  9. 9.
    McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: Human-robot interface design for large swarms of autonomous mobile robots. In: Proceedings of the AAAI Spring Symposium, Stanford, CA, USA (March 2006)Google Scholar
  10. 10.
    Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.: Multimode locomotion for reconfigurable robots. Autonomous Robots 20(2), 165–177 (2006)CrossRefGoogle Scholar
  11. 11.
    Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R.: Distributed construction by mobile robots with enhanced building blocks. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA (May 2006)Google Scholar
  12. 12.
    Winfree, E.: Simulations of computing by self-assembly of DNA. Technical Report CS-TR:1998:22, California Institute of Technology, Pasadena, CA, USA (1998)Google Scholar
  13. 13.
    Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology, Pasadena, CA, USA (June 1998)Google Scholar
  14. 14.
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of STOC 2000, Portland, OR, USA, pp. 459–468 (May 2000)Google Scholar
  15. 15.
    Wang, H.: Proving theorems by pattern recognition. II. Bell System Technical J. 40, 1–42 (1961)CrossRefGoogle Scholar
  16. 16.
    Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Reishus, D.: Design of a self-assembled memory circuit. In: Proceedings of the 5th Foundations of Nanoscience: Self-Assembled Architectures and Devices (FNANO 2008), Snowbird, UT, USA, pp. 239–246 (April 2008)Google Scholar
  18. 18.
    Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)CrossRefGoogle Scholar
  19. 19.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., Moisset de Espanés, P., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of STOC 2002, Montreal, Quebec, Canada, pp. 23–32 (May 2002)Google Scholar
  20. 20.
    Adleman, L., Goel, A., Huang, M.D., Moisset de Espanés, P.: Running time and program size for self-assembled squares. In: Proceedings of STOC 2002, Montreal, Quebec, Canada, pp. 740–748 (May 2002)Google Scholar
  21. 21.
    Moisset de Espanés, P., Goel, A.: Toward minimum size self-assembled counters. Natural Computing 7(3), 317–334 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, H.L.: Towards minimum tile self-assembled counters. In: Proceedings of the 5th Foundations of Nanoscience: Self-Assembled Architectures and Devices (FNANO 2008), Snowbird, UT, USA, pp. 218–223 (April 2008)Google Scholar
  23. 23.
    Etzion-Petruschka, Y., Harel, D., Myers, D.: On the solvability of domino snake problems. Theoretical Computer Science 131(2), 243–269 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.Y., Moisset de Espanés, P., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM J. on Computing 34(6), 1493–1515 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kao, M.Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), Miami, FL, USA, pp. 571–580 (January 2006)Google Scholar
  26. 26.
    Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. on Computing 36(6), 1544–1569 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Brun, Y., Reishus, D.: Path finding in the tile assembly model. Theoretical Computer Science (in press, 2008)Google Scholar
  28. 28.
    Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
  29. 29.
    Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. JACS 126(43), 13924–13925 (2004)CrossRefGoogle Scholar
  30. 30.
    Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13), 3211–3220 (1993)CrossRefGoogle Scholar
  31. 31.
    Reishus, D., Shaw, B., Brun, Y., Chelyapov, N., Adleman, L.: Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures. JACS 127(50), 17590–17591 (2005)CrossRefGoogle Scholar
  32. 32.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), 424 (2004)CrossRefGoogle Scholar
  33. 33.
    Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Proceedings of FOCS 2002, Madison, WI, USA, vol. 2943, pp. 126–144 (June 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yuriy Brun
    • 1
  • Dustin Reishus
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations