Connecting the Dots: Molecular Machinery for Distributed Robotics
- 1.6k Downloads
Abstract
Nature is considered one promising area to search for inspiration in designing robotic systems. Some work in swarm robotics has tried to build systems that resemble distributed biological systems and inherit biology’s fault tolerance, scalability, dependability, and robustness. Such systems, as well as ones in the areas of active self-assembly and amorphous computing, typically use relatively simple components with limited computation, memory, and computational power to accomplish complex tasks, such as forming paths in the presence of obstacles. We demonstrate that such tasks can be accomplished in the well-studied tile assembly model, a model of molecular self-assembly that is strictly simpler than other biologically-inspired models. Our systems use a small number of distinct components to find minimal-length paths in time linear in the length of the path while inheriting scalability and fault tolerance of the underlying natural process of self-assembly.
Keywords
Tile System Molecular Machinery Simple Component Swarm Robotic Formal Mathematical ModelPreview
Unable to display preview. Download preview PDF.
References
- 1.Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications of the ACM 43(5), 74–82 (2000)CrossRefGoogle Scholar
- 2.Arbuckle, D.J., Requicha, A.A.G.: Active self-assembly. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2004), New Orleans, LA, USA, pp. 896–901 (April 2004)Google Scholar
- 3.Clement, L., Nagpal, R.: Self-assembly and self-repairing topologies. In: Proceedings of the Workshop on Adaptability in Multi-Agent Systems, RoboCup Australian Open (January 2003)Google Scholar
- 4.Kondacs, A.: Biologically-inspired self-assembly of two-dimensional shapes using global-to-local compilation. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico (August 2003)Google Scholar
- 5.Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape Using Biologically-Inspired Local Interactions and Origami Mathematics. PhD thesis, Massachussetts Institute of Technology, Cambridge, MA, USA (June 2001)Google Scholar
- 6.Nagpal, R., Shrobe, H.E., Bachrach, J.: Organizing a global coordinate system from local information on an ad hoc sensor network. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 7.Butera, W.J.: Programming a Paintable Computer. PhD thesis, Massachussetts Institute of Technology, Cambridge, MA, USA (February 2002)Google Scholar
- 8.Klavins, E.: Programmable self-assembly. Control Systems Magazine 24(4), 43–56 (2007)CrossRefGoogle Scholar
- 9.McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: Human-robot interface design for large swarms of autonomous mobile robots. In: Proceedings of the AAAI Spring Symposium, Stanford, CA, USA (March 2006)Google Scholar
- 10.Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.: Multimode locomotion for reconfigurable robots. Autonomous Robots 20(2), 165–177 (2006)CrossRefGoogle Scholar
- 11.Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R.: Distributed construction by mobile robots with enhanced building blocks. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA (May 2006)Google Scholar
- 12.Winfree, E.: Simulations of computing by self-assembly of DNA. Technical Report CS-TR:1998:22, California Institute of Technology, Pasadena, CA, USA (1998)Google Scholar
- 13.Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology, Pasadena, CA, USA (June 1998)Google Scholar
- 14.Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of STOC 2000, Portland, OR, USA, pp. 459–468 (May 2000)Google Scholar
- 15.Wang, H.: Proving theorems by pattern recognition. II. Bell System Technical J. 40, 1–42 (1961)CrossRefGoogle Scholar
- 16.Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 17.Reishus, D.: Design of a self-assembled memory circuit. In: Proceedings of the 5th Foundations of Nanoscience: Self-Assembled Architectures and Devices (FNANO 2008), Snowbird, UT, USA, pp. 239–246 (April 2008)Google Scholar
- 18.Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)CrossRefGoogle Scholar
- 19.Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., Moisset de Espanés, P., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of STOC 2002, Montreal, Quebec, Canada, pp. 23–32 (May 2002)Google Scholar
- 20.Adleman, L., Goel, A., Huang, M.D., Moisset de Espanés, P.: Running time and program size for self-assembled squares. In: Proceedings of STOC 2002, Montreal, Quebec, Canada, pp. 740–748 (May 2002)Google Scholar
- 21.Moisset de Espanés, P., Goel, A.: Toward minimum size self-assembled counters. Natural Computing 7(3), 317–334 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Chen, H.L.: Towards minimum tile self-assembled counters. In: Proceedings of the 5th Foundations of Nanoscience: Self-Assembled Architectures and Devices (FNANO 2008), Snowbird, UT, USA, pp. 218–223 (April 2008)Google Scholar
- 23.Etzion-Petruschka, Y., Harel, D., Myers, D.: On the solvability of domino snake problems. Theoretical Computer Science 131(2), 243–269 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.Y., Moisset de Espanés, P., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM J. on Computing 34(6), 1493–1515 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Kao, M.Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), Miami, FL, USA, pp. 571–580 (January 2006)Google Scholar
- 26.Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. on Computing 36(6), 1544–1569 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 27.Brun, Y., Reishus, D.: Path finding in the tile assembly model. Theoretical Computer Science (in press, 2008)Google Scholar
- 28.Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
- 29.Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. JACS 126(43), 13924–13925 (2004)CrossRefGoogle Scholar
- 30.Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13), 3211–3220 (1993)CrossRefGoogle Scholar
- 31.Reishus, D., Shaw, B., Brun, Y., Chelyapov, N., Adleman, L.: Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures. JACS 127(50), 17590–17591 (2005)CrossRefGoogle Scholar
- 32.Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), 424 (2004)CrossRefGoogle Scholar
- 33.Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Proceedings of FOCS 2002, Madison, WI, USA, vol. 2943, pp. 126–144 (June 2003)Google Scholar