Advertisement

Speeding Up Local-Search Type Algorithms for Designing DNA Sequences under Thermodynamical Constraints

  • Suguru Kawashimo
  • Yen Kaow Ng
  • Hirotaka Ono
  • Kunihiko Sadakane
  • Masafumi Yamashita
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5347)

Abstract

We present general techniques to speed up local search type algorithms for designing DNA sequences which satisfy thermodynamical constraints based on the minimum free energy (MFE) criteria. MFE based constraints are generally difficult to handle in local search type algorithms, since these algorithms typically require a large number of time-consuming calculations of MFE to find an improved solution. In this paper, we introduce general techniques to reduce such calculations of MFE. The ideas are based on the reuse of MFE computations and fast approximation of MFE, both of which fit the nature of local search type algorithms. In computational experiments, our techniques succeeded in speeding up typical local search type algorithms without degenerating the original performance of the algorithms.

Keywords

DNA Sequence Design Local Search Statistical Thermodynamical Constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Andronescu, M., Zhang, Z., Condon, A.: Secondary Structure Prediction of Interacting RNA Molecules. J. Mol. Biol. 345(5), 987–1001 (2005)CrossRefGoogle Scholar
  3. 3.
    Andronescu, M., Fejes, A., Hutter, F., Condon, A., Hoos, H.: A New Algorithm for RNA Secondary Structure Design. J. Mol. Biol. 336(3), 607–624 (2004)CrossRefGoogle Scholar
  4. 4.
    Arita, M., Nishikawa, A., Hagiya, M., Komiya, K., Gouzu, H., Sakamoto, K.: Improving Sequence Design for DNA Computing. In: Proc. of 5th Genetic Evol. Comput. Conf. (GECCO), pp. 875–882 (2000)Google Scholar
  5. 5.
    Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation Computing 20(3), 263–273 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Asahiro, Y.: Simple Greedy Methods for DNA Word Design. In: Proc. of 9th World Multi-Conference on Systemics, Cybernetics and Informatics, vol. 3, pp. 186–191 (2005)Google Scholar
  7. 7.
    Deaton, R., Kim, J., Chen, J.: Design and test of noncrosshybridizing oligonucleotide building blocks for DNA computers and nanostructures. Appl. Phys. Lett. 82(8), 1305–1307 (2003)CrossRefGoogle Scholar
  8. 8.
    Flamm, C., Hofacker, I., Maurer-Stroh, S., Stadler, P., Zehl, M.: Design of multistable RNA molecules. RNA 7(2), 254–265 (2001)CrossRefGoogle Scholar
  9. 9.
    Garzon, M., Deaton, R., Neathery, P., Franceschetti, D., Murphy, R.: A new metric for DNA computing. In: Proc. of the 2nd Genetic Programming Conf., pp. 472–478 (1997)Google Scholar
  10. 10.
    Garzon, M., Phan, V., Roy, S., Neel, A.: In search of optimal codes for DNA computing. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 143–156. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Hernandez, R., Hoos, H., Condon, A.: Computational RNA secondary structure design: empirical complexity and improved methods. BMC Bioinformatics 8(1), 34 (2007)CrossRefGoogle Scholar
  12. 12.
    Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, S., Tacker, M., Schuster, P.: Fast Folding and Comparison of RNA Secondary Structures. Monatsh. Chem. 125, 167–188 (1994)CrossRefGoogle Scholar
  13. 13.
    Kashiwamura, S., Kameda, A., Yamamoto, M., Ouchi, A.: Two-Step Search for DNA Sequence Design. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 87(6), 1446–1453 (2004)Google Scholar
  14. 14.
    Kawashimo, S., Ono, H., Sadakane, K., Yamashita, M.: DNA sequence design by dynamic neighborhood searches. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 157–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kawashimo, S., Ono, H., Sadakane, K., Yamashita, M.: Dynamic neighborhood searches for thermodynamically designing DNA sequence. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 130–139. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Lyngsø, R., Zuker, M., Pedersen, C.: Fast evaluation of internal loops in RNA secondary structure prediction. Bioinfomatics 15, 440–445 (1999)CrossRefGoogle Scholar
  17. 17.
    Rose, J., Deaton, R., Suyama, A.: Statistical thermodynamic analysis and design of DNA-based computers. Natural Computing 3, 443–459 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shorteed, M., Chang, S., Hong, D., Phillips, M., Campion, B., Tulpan, D., Andronescu, M., Condon, A., Hoos, H., Smith, L.: A thermodynamic approach to designing struct-free combinatorial DNA word set. Nucl. Acids Res. 33(15), 4965–4977 (2005)CrossRefGoogle Scholar
  19. 19.
    Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid sequences for DNA computing based on a thermodynamic approach. Nucl. Acids Res. 33(3), 903–911 (2005)CrossRefGoogle Scholar
  20. 20.
    Tulpan, D., Hoos, H., Condon, A.: Stochastic Local Search Algorithms for DNA Word Design. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 229–241. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Tulpan, D., Hoos, H.: Hybrid Randomized Neighborhoods Improve Stochastic Local Search for DNA Code Design. In: Proc. Advances in Artificial Intelligence, 16th Conference of the Canadian Society for Computational Studies of Intelligence. LNCS, vol. 671, pp. 418–433. Springer, Heidelberg (2003)Google Scholar
  22. 22.
    Tulpan, D., Andronescu, M., Changf, S., Shortreed, M., Condon, A., Hoos, H., Smith, L.: Thermodynamically based DNA strand design. Nucl. Acids Res. 33(15), 4951–4964 (2005)CrossRefGoogle Scholar
  23. 23.
    Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  24. 24.
    Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl. Acids Res. 9, 133–148 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Suguru Kawashimo
    • 1
  • Yen Kaow Ng
    • 1
  • Hirotaka Ono
    • 1
  • Kunihiko Sadakane
    • 1
  • Masafumi Yamashita
    • 1
  1. 1.Dept. of Computer Science and Communication EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations