Experimental Validation of Signal Dependent Operation in Whiplash PCR
- 2 Citations
- 1.6k Downloads
Abstract
Whiplash PCR (WPCR), which implements self-directed operation, programmed within a single DNA molecule, is a potential candidate for both mathematical and biological applications. However, WPCR-based methods are known to suffer from a serious efficiency problem called back-hybridization (BH). Previously, we proposed and partially validated a new rule-protect operation to abolish BH. In this work, we experimentally demonstrate the ability of rule-protect to drive multi-step WPCR. Successful implementation of isothermal operation at physiological temperatures is an essential benchmark for biological applications. We also propose the use of rule-protect for external signalling to control computational operation. Consequently, signal-dependent self-directed operation, which is conceptually new to DNA computing, is achieved. The present architecture, provided with sensing ability, allows a composite system design layering computational reactions, and would be suitable for functioning as the central processing unit of this system.
Keywords
Central Processing Unit Transition Rule Hairpin Structure Strand Displacement Sensory SequenceReferences
- 1.Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
- 2.Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by dna hairpin formation. Science 288, 1223–1226 (2000)CrossRefGoogle Scholar
- 3.Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)CrossRefGoogle Scholar
- 4.Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., Yokoyama, S.: Towards parallel evaluation and learning of boolean μ-formulas with molecules. In: Rubin, H., Wood, D. (eds.) DNA Based Computers III, pp. 57–72 (2000)Google Scholar
- 5.Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H., Hagiya, M.: State transitions by molecules. Biosystems 52, 81–91 (1999)CrossRefGoogle Scholar
- 6.Komiya, K., Sakamoto, K., Kameda, A., Yamamoto, M., Ohuchi, A., Kiga, D., Yokoyama, S., Hagiya, M.: DNA polymerase programmed with a hairpin DNA incorporates a multiple-instruction architecture into molecular computing. Biosystems 83, 18–25 (2006)CrossRefGoogle Scholar
- 7.Wood, D.H., Bi, H., Kimbrough, S.O., Wu, D.-J., Chen, J.: DNA starts to learn poker. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, p. 92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 8.Rose, J.A., Hagiya, M., Deaton, R.J., Suyama, A.: A DNA-based in vitro genetic program. J. Biol. Phys. 28, 493–498 (2002)CrossRefGoogle Scholar
- 9.Rose, J.A., Takano, M., Hagiya, M., Suyama, A.: A DNA computing-based genetic program for in vitro protein evolution via constrained pseudomodule shuffling. Journal of Genetic Programming and Evolvable Machines 4, 139–152 (2003)CrossRefGoogle Scholar
- 10.Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: Equilibrium analysis of the efficiency of an autonomous molecular computer. Phys. Rev. E 65, Article 021910, 1–13 (2002)CrossRefGoogle Scholar
- 11.Rose, J.A., Komiya, K., Yaegashi, S., Hagiya, M.: Displacement whiplash PCR: Optimized architecture and experimental validation. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 393–403. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 12.Seelig, G., Soloveichik, D., Zhang, D., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)CrossRefGoogle Scholar