Skip to main content

Numberings and Randomness

  • Conference paper
Mathematical Theory and Computational Practice (CiE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5635))

Included in the following conference series:

Abstract

We prove various results on effective numberings and Friedberg numberings of families related to algorithmic randomness. The family of all Martin-Löf random left-computably enumerable reals has a Friedberg numbering, as does the family of all \(\Pi^0_1\) classes of positive measure. On the other hand, the \(\Pi^0_1\) classes contained in the Martin-Löf random reals do not even have an effective numbering, nor do the left-c.e. reals satisfying a fixed randomness constant. For \(\Pi^0_1\) classes contained in the class of reals satisfying a fixed randomness constant, we prove that at least an effective numbering exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodhead, P., Cenzer, D.: Effectively closed sets and enumerations. Arch. Math. Logic 46(7-8), 565–582 (2008); MR 2395559 (2009b:03119)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ershov, Y.L.: Theory of numberings. In: Handbook of computability theory. Stud. Logic Found. Math., vol. 140, pp. 473–503. North-Holland, Amsterdam (1999); MR 1720731 (2000j:03060)

    Chapter  Google Scholar 

  3. Friedberg, R.M.: Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication. J. Symb. Logic 23, 309–316 (1958); MR 0109125 (22 #13)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 2nd edn. Graduate Texts in Computer Science. Springer, New York (1997); MR 1438307 (97k:68086)

    Book  MATH  Google Scholar 

  5. Kummer, M.: An easy priority-free proof of a theorem of Friedberg. Theoret. Comput. Sci. 74(2), 249–251 (1990); MR 1067521 (91h:03056)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nies, A.: Computability and randomness. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  7. Simpson, S.G.: An extension of the recursively enumerable Turing degrees. J. Lond. Math. Soc. 75(2), 287–297 (2007); MR 2340228 (2008d:03041)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodhead, P., Kjos-Hanssen, B. (2009). Numberings and Randomness. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03073-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03072-7

  • Online ISBN: 978-3-642-03073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics