Skip to main content

A Divergence Formula for Randomness and Dimension

  • Conference paper
  • 854 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5635))

Abstract

If S is an infinite sequence over a finite alphabet Σ and β is a probability measure on Σ, then the dimension of S with respect to β, written \(\dim^\beta(S)\), is a constructive version of Billingsley dimension that coincides with the (constructive Hausdorff) dimension dim(S) when β is the uniform probability measure. This paper shows that dimβ(S) and its dual Dimβ(S), the strong dimension of S with respect to β, can be used in conjunction with randomness to measure the similarity of two probability measures α and β on Σ. Specifically, we prove that the divergence formula

$$ {\mathrm {dim}}^\beta(R) = {\mathrm{Dim}}^\beta(R) =\frac{{\mathcal{H}}(\alpha)}{{\mathcal{H}}(\alpha) + {\mathcal{D}}(\alpha || \beta)} $$

holds whenever α and β are computable, positive probability measures on Σ and R ∈ Σ ∞  is random with respect to α. In this formula, \({\mathcal{H}}(\alpha)\) is the Shannon entropy of α, and \({\mathcal{D}}(\alpha||\beta)\) is the Kullback-Leibler divergence between α and β.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension, algorithmic information, and computational complexity. SIAM Journal on Computing 37, 671–705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Billingsley, P.: Hausdorff dimension in probability theory. Illinois Journal of Mathematics 4, 187–209 (1960)

    MathSciNet  MATH  Google Scholar 

  3. Borel, E.: Sur les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo 27, 247–271 (1909)

    Article  MATH  Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley & Sons, Inc., Chichester (2006)

    MATH  Google Scholar 

  5. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theoretical Computer Science 310, 1–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eggleston, H.: The fractional dimension of a set defined by decimal properties. Quarterly Journal of Mathematics 20, 31–36 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hausdorff, F.: Dimension und äusseres Mass. Mathematische Annalen 79, 157–179 (1919) (English translation)

    Article  MATH  Google Scholar 

  8. Hitchcock, J.M.: Effective Fractal Dimension Bibliography (October 2008), http://www.cs.uwyo.edu/~jhitchco/bib/dim.shtml

  9. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  10. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32, 1236–1259 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lutz, J.H.: The dimensions of individual strings and sequences. Information and Computation 187, 49–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lutz, J.H.: A divergence formula for randomness and dimension. Technical Report cs.CC/0811.1825, Computing Research Repository (2008)

    Google Scholar 

  13. Lutz, J.H., Mayordomo, E.: Dimensions of points in self-similar fractals. SIAM Journal on Computing 38, 1080–1112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters 84(1), 1–3 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schnorr, C.P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5, 246–258 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schnorr, C.P.: A survey of the theory of random sequences. In: Butts, R.E., Hintikka, J. (eds.) Basic Problems in Methodology and Linguistics, pp. 193–210. D. Reidel, Dordrecht (1977)

    Chapter  Google Scholar 

  18. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Mathematica 153, 259–277 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tricot, C.: Two definitions of fractional dimension. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 91, pp. 57–74 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lutz, J.H. (2009). A Divergence Formula for Randomness and Dimension. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03073-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03072-7

  • Online ISBN: 978-3-642-03073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics