Skip to main content

Relationship between Kanamori-McAloon Principle and Paris-Harrington Theorem

  • Conference paper
Mathematical Theory and Computational Practice (CiE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5635))

Included in the following conference series:

Abstract

We give a combinatorial proof of a tight relationship between the Kanamori-McAloon principle and the Paris-Harrington theorem with a number-theoretic parameter function. We show that the provability of the parametrised version of the Kanamori-McAloon principle can exactly correspond to the relationship between Peano Arithmetic and the ordinal ε 0 which stands for the proof-theoretic strength of Peano Arithmetic. Because A. Weiermann already noticed the same behaviour of the parametrised version of Paris-Harrington theorem, this indicates that both propositions behave in the same way with respect to the provability in Peano Arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30(2), 264–286 (1929)

    MathSciNet  MATH  Google Scholar 

  2. Paris, J., Harrington, L.: A mathematical incompleteness in peano arithmetic. In: Barwise, J. (ed.) Handbook of Mathematical Logic. Studies in Logic and the Foundations of Mathematics, vol. 90, pp. 1133–1142. North-Holland, Amsterdam (1977)

    Chapter  Google Scholar 

  3. Erdös, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given set. Proc. London Math. Soc. 2(3), 417–439 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kanamori, A., McAloon, K.: On Gödel incompleteness and finite combinatorics. Ann. Pure Appl. Logic 33(1), 23–41 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. McAloon, K.: Progressions transfinies de théories axiomatiques, formes combinatoires du théorème d’incomplétude et fonctions récursives a croissance rapide. In: McAloon, K. (ed.) Modèles de l’Arithmetique, France, Paris. Asterique, vol. 73, pp. 41–58. Société Mathématique de France, Paris (1980)

    Google Scholar 

  6. Weiermann, A.: A classification of rapidly growing Ramsey functions. Proc. Am. Math. Soc. 132(2), 553–561 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Schwichtenberg, H.: Eine Klassifikation der ε 0-rekursiven Funktionen. Z. Math. Logik Grundlagen Math. 17, 61–74 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buchholz, W., Wainer, S.: Provably computable functions and the fast growing hierarchy. In: Simpson, S. (ed.) Logic and Combinatorics. The AMS-IMS-SIAM joint summer conference in 1985. Contemporary Mathematics Series, pp. 179–198. Amer. Math. Soc., Providence (1987)

    Google Scholar 

  9. Fairtlough, M., Wainer, S.S.: Hierarchies of provably recursive functions. In: Handbook of proof theory. Stud. Logic Found. Math., vol. 137, pp. 149–207. North-Holland, Amsterdam (1998)

    Chapter  Google Scholar 

  10. Loebl, M., Nešetřil, J.: An unprovable Ramsey-type theorem. Proc. Amer. Math. Soc. 116(3), 819–824 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arai, T.: On the slowly well orderedness of ε 0. Math. Log. Q. 48(1), 125–130 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carlucci, L., Lee, G., Weiermann, A.: Classifying the phase transition threshold for regressive ramsey functions (preprint)

    Google Scholar 

  13. Weiermann, A.: Analytic combinatorics, proof-theoretic ordinals, and phase transitions for independence results. Ann. Pure Appl. Logic 136(1-2), 189–218 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kojman, M., Lee, G., Omri, E., Weiermann, A.: Sharp thresholds for the phase transition between primitive recursive and ackermannian ramsey numbers. J. Comb. Theory, Ser. A 115(6), 1036–1055 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bovykin, A.: Several proofs of PA-unprovability. In: Logic and its applications. Contemp. Math., vol. 380, pp. 29–43. Amer. Math. Soc., Providence (2005)

    Chapter  Google Scholar 

  16. Lee, G.: Phase Transitions in Axiomatic Thought. PhD thesis, University of Münster, Germany (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, G. (2009). Relationship between Kanamori-McAloon Principle and Paris-Harrington Theorem. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03073-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03072-7

  • Online ISBN: 978-3-642-03073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics