Skip to main content

ODDboost: Incorporating Posterior Estimates into AdaBoost

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5632))

Abstract

Boosting methods while being among the best classification methods developed so far, are known to degrade performance in case of noisy data and overlapping classes. In this paper we propose a new upper generalization bound for weighted averages of hypotheses, which uses posterior estimates for training objects and is based on reduction of binary classification problem with overlapping classes to a deterministic problem. If we are given accurate posterior estimates, proposed bound is lower than existing bound by Schapire et al [25]. We design an AdaBoost-like algorithm which optimizes proposed generalization bound and show that incorporated with good posterior estimates it performs better than the standard AdaBoost on real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barinova, O., Vetrov, D.: ODDboost: Incorporating posterior estimates into AdaBoost, Technical Report 1422 (2009), http://graphics.cs.msu.ru/en/publications/text/oddboost.pdf

  2. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Fifth Annual Workshop on Computational Learning Theory. ACM Press, Pittsburgh (1992)

    Google Scholar 

  3. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  4. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge 2, 121–167 (1998)

    Article  Google Scholar 

  5. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  Google Scholar 

  6. Caruana, R., Niculescu-Mizil, A.: An Empirical Comparison of Supervised Learning Algorithms. In: Proceedings of the 23rd International Conference on Machine Learning (ICML 2006)(2006)

    Google Scholar 

  7. Collins, M., Schapire, R., Singer, Y.: Logistic regression, AdaBoost and Bregman distances. Machine Learning 48(1/2/3) (2002)

    Google Scholar 

  8. Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  9. Dietterich, T.G.: An experimental comparison of three methods for constructing ensebles of decision trees: Bagging, boosting, and randomization. Machine Learning 40(2) (1999)

    Google Scholar 

  10. Domingos, P.: A Unified Bias-Variance Decomposition for Zero-One and Squared Loss. In: Proc. of the 17th National Conference on Artificial Intelligence (2000)

    Google Scholar 

  11. Domingo, C., Watanabe, O.: Madaboost: A modication of adaboost. In: 13th Annual Conference on Comp. Learning Theory (2000)

    Google Scholar 

  12. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 (1997)

    Google Scholar 

  13. Freund, Y., Schapire, R.: Discussion of the paper “Additive logistic regression: a statistical view of boosting” by J. Friedman, T. Hastie and R. Tibshirani. The Annals of Statistics 38(2), 391–393 (2000)

    Google Scholar 

  14. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: a Statistical View of Boosting. The Annals of Statistics 28(2), 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedman, J.: Greedy function approximation: A gradient boosting machine. Annals of Statistics 29(5) (2001)

    Google Scholar 

  16. Grove, A.J., Schuurmans, D.: Boosting in the limit: Maximizing the margin of learned ensembles. In: Proceedings of the Fifteenth National Conference on Artifical Intelligence (1998)

    Google Scholar 

  17. Kearns, M., Vazirani, U.: An introduction to computational learning theory. MIT Press, Cambridge (1994)

    Google Scholar 

  18. Krause, N., Singer, Y.: Leveraging the Margin More Carefully. In: ACM International Conference Proceeding Series, vol. 69 (2004)

    Google Scholar 

  19. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent. In: Neural Information Processing Systems, vol. 12, pp. 512–518. MIT Press, Cambridge (2000)

    Google Scholar 

  20. Niculescu-Mizil, A., Caruana, R.: Obtaining Calibrated Probabilities from Boosting. In: Proc. of 21st Conference on Uncertainty in Artificial Intelligence (2005)

    Google Scholar 

  21. Perrone, M.: Improving regression estimation: Averaging methods for Variance reduction with extension to General Convex Measure Optimization, Ph.D. Thesis, Brown University (1993)

    Google Scholar 

  22. Ratsch, G.: Robust Boosting and Convex Optimization. Doctoral dissertation, University of Potsdam (2001)

    Google Scholar 

  23. Reyzin, L., Schapire, R.: How boosting the margin can also boost classifier complexity. In: Proceedings of the 23rd International Conference on Machine Learning (2006)

    Google Scholar 

  24. Rosset, S.: Robust Boosting and Its Relation to Bagging. In: KDD 2005 (2005)

    Google Scholar 

  25. Schapire, R., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. In: Machine Learning: Proceedings of the Fourteenth International Conference (1997)

    Google Scholar 

  26. Schapire, R., Singer, Y.: Improved boosting algorithm using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)

    Article  MATH  Google Scholar 

  27. Schapire, R., Rochery, M., Rahim, M., Gupta, N.: Incorporating prior knowledge into boosting. In: Machine Learning: Proceedings of the Nineteenth International Conference, pp. 538–545 (2002); Takenouchi T., Eguchi S.: Robustifying AdaBoost by adding the naive error rate. Neural Computation 16 (2004)

    Google Scholar 

  28. Taniguchi, M., Tresp, V.: Averaging Regularized Estimators. Neural Computation (1997)

    Google Scholar 

  29. Vezhnevets, A., Barinova, O.: Avoiding boosting overfitting by removing confusing samples. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS, vol. 4701, pp. 430–441. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barinova, O., Vetrov, D. (2009). ODDboost: Incorporating Posterior Estimates into AdaBoost. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2009. Lecture Notes in Computer Science(), vol 5632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03070-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03070-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03069-7

  • Online ISBN: 978-3-642-03070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics