Skip to main content

Data Mining of Agricultural Yield Data: A Comparison of Regression Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5633))

Abstract

Nowadays, precision agriculture refers to the application of state-of-the-art GPS technology in connection with small-scale, sensor-based treatment of the crop. This introduces large amounts of data which are collected and stored for later usage. Making appropriate use of these data often leads to considerable gains in efficiency and therefore economic advantages. However, the amount of data poses a data mining problem – which should be solved using data mining techniques. One of the tasks that remains to be solved is yield prediction based on available data. From a data mining perspective, this can be formulated and treated as a multi-dimensional regression task. This paper deals with appropriate regression techniques and evaluates four different techniques on selected agriculture data. A recommendation for a certain technique is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)

    Google Scholar 

  2. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)

    Google Scholar 

  3. Collobert, R., Bengio, S., Williamson, C.: Svmtorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research 1, 143–160 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Corwin, D.L., Lesch, S.M.: Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agron. J. 95(3), 455–471 (2003)

    Article  Google Scholar 

  5. Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers EC-14, 326–334 (1965)

    Article  MATH  Google Scholar 

  6. Crone, S.F., Lessmann, S., Pietsch, S.: Forecasting with computational intelligence - an evaluation of support vector regression and artificial neural networks for time series prediction. In: International Joint Conference on Neural Networks, 2006. IJCNN 2006, pp. 3159–3166 (2006)

    Google Scholar 

  7. Drummond, S., Joshi, A., Sudduth, K.A.: Application of neural networks: precision farming. In: International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, vol. 1, pp. 211–215 (1998)

    Google Scholar 

  8. Gunn, S.R.: Support vector machines for classification and regression. Technical Report, School of Electronics and Computer Science, University of Southampton, Southampton, U.K. (1998)

    Google Scholar 

  9. Hagan, M.T.: Neural Network Design (Electrical Engineering). Thomson Learning (December 1995)

    Google Scholar 

  10. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  11. Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, Reading (1990)

    Google Scholar 

  12. Huang, C., Yang, L., Wylie, B., Homer, C.: A strategy for estimating tree canopy density using landsat 7 etm+ and high resolution images over large areas. In: Proceedings of the Third International Conference on Geospatial Information in Agriculture and Forestry (2001)

    Google Scholar 

  13. Liu, J., Miller, J.R., Haboudane, D., Pattey, E.: Exploring the relationship between red edge parameters and crop variables for precision agriculture. In: 2004 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. 1276–1279 (2004)

    Google Scholar 

  14. Lobell, D.B., Ivan Ortiz-Monasterio, J., Asner, G.P., Naylor, R.L., Falcon, W.P.: Combining field surveys, remote sensing, and regression trees to understand yield variations in an irrigated wheat landscape. Agronomy Journal 97, 241–249 (2005)

    Google Scholar 

  15. Maszczyk, T., Duch, W.: Support Vector Machines for Visualization and Dimensionality Reduction. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 346–356. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Meier, U.: Entwicklungsstadien mono- und dikotyler Pflanzen. Biologische Bundesanstalt für Land- und Forstwirtschaft, Braunschweig, Germany (2001)

    Google Scholar 

  17. Mejía-Guevara, I., Kuri-Morales, Á.F.: Evolutionary feature and parameter selection in support vector regression. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS, vol. 4827, pp. 399–408. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Middleton, E.M., Campbell, P.K.E., Mcmurtrey, J.E., Corp, L.A., Butcher, L.M., Chappelle, E.W.: “Red edge” optical properties of corn leaves from different nitrogen regimes. In: 2002 IEEE International Geoscience and Remote Sensing Symposium, vol. 4, pp. 2208–2210 (2002)

    Google Scholar 

  19. Mitchell, T.M.: Machine Learning. McGraw-Hill Science/Engineering/Math (March 1997)

    Google Scholar 

  20. Neeteson, J.J.: Nitrogen Management for Intensively Grown Arable Crops and Field Vegetables, ch. 7, pp. 295–326. CRC Press, Haren (1995)

    Google Scholar 

  21. Orr, M., Hallam, J., Murray, A., Ninomiya, S., Oide, M., Leonard, T.: Combining regression trees and radial basis function networks. International Journal of Neural Systems 10 (1999)

    Google Scholar 

  22. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  23. Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  24. Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Estimation of neural network parameters for wheat yield prediction. In: Bramer, M. (ed.) Artificial Intelligence in Theory and Practice II. IFIP International Federation for Information Processing, vol. 276, pp. 109–118. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Optimizing wheat yield prediction using different topologies of neural networks. In: Verdegay, J.L., Ojeda-Aciego, M., Magdalena, L. (eds.) Proceedings of IPMU 2008, pp. 576–582. University of Málaga (June 2008)

    Google Scholar 

  26. Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Data mining with neural networks for wheat yield prediction. In: Perner, P. (ed.) ICDM 2008. LNCS, vol. 5077, pp. 47–56. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Schneider, M., Wagner, P.: Prerequisites for the adoption of new technologies - the example of precision agriculture. In: Agricultural Engineering for a Better World, Düsseldorf. VDI Verlag GmbH (2006)

    Google Scholar 

  28. Serele, C.Z., Gwyn, Q.H.J., Boisvert, J.B., Pattey, E., Mclaughlin, N., Daoust, G.: Corn yield prediction with artificial neural network trained using airborne remote sensing and topographic data. In: 2000 IEEE International Geoscience and Remote Sensing Symposium, vol. 1, pp. 384–386 (2000)

    Google Scholar 

  29. Smola, A.J., Olkopf, B.S.: A tutorial on support vector regression. Technical report, Statistics and Computing (1998)

    Google Scholar 

  30. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  31. Wagner, P., Schneider, M.: Economic benefits of neural network-generated site-specific decision rules for nitrogen fertilization. In: Stafford, J.V. (ed.) Proceedings of the 6th European Conference on Precision Agriculture, pp. 775–782 (2007)

    Google Scholar 

  32. Weigert, G.: Data Mining und Wissensentdeckung im Precision Farming - Entwicklung von ökonomisch optimierten Entscheidungsregeln zur kleinräumigen Stickstoff-Ausbringung. PhD thesis, TU München (2006)

    Google Scholar 

  33. Wu, S., Chow, T.W.S.: Support vector visualization and clustering using self-organizing map and vector one-class classification. In: Proceedings of the International Joint Conference on Neural Networks, vol. 1, pp. 803–808 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruß, G. (2009). Data Mining of Agricultural Yield Data: A Comparison of Regression Models. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2009. Lecture Notes in Computer Science(), vol 5633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03067-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03067-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03066-6

  • Online ISBN: 978-3-642-03067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics