Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5604))

Abstract

Psychophysical experiments show that humans are better at perceiving rotation and expansion than translation [5][9]. These findings are inconsistent with standard models of motion integration which predict best performance for translation. To explain this discrepancy, our theory formulates motion perception at two levels of inference: we first perform model selection between the competing models (e.g. translation, rotation, and expansion) and then estimate the velocity using the selected model. We define novel prior models for smooth rotation and expansion using techniques similar to those in the slow-and-smooth model [23] (e.g. Green functions of differential operators). The theory gives good agreement with the trends observed in four human experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barraza, J.F., Grzywacz, N.M.: Measurement of angular velocity in the perception of rotation. Vision Research 42 (2002)

    Google Scholar 

  2. Black, M.J., Anandan, P.: The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)

    Article  Google Scholar 

  3. Duchon, J.: In: Schempp, W., Zeller, K. (eds.). Lecture Notes in Math., vol. 571, pp. 85–100. Springer, Berlin (1977)

    Google Scholar 

  4. Duffy, C.J., Wurtz, R.H.: Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large field stimuli. Journal of Neurophysiology 65, 1329–1345 (1991)

    Google Scholar 

  5. Freeman, T., Harris, M.: Human sensitivity to expanding and rotating motion: effect of complementary masking and directional structure. Vision research 32 (1992)

    Google Scholar 

  6. Hildreth, E.C.: Computations Underlying the Measurement of Visual Motion. Artificial Intelligence 23(3), 309–354 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Horn, B., Schunck, B.: Determining Optical Flow. Artificial Intelligence 17 (1981)

    Google Scholar 

  8. Knill, D., Richards, W. (eds.): Perception as Bayesian Inference. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  9. Lee, A., Yuille, A., Lu, H.: Superior perception of circular/radial than translational motion cannot be explained by generic priors. In: VSS 2008 (2008)

    Google Scholar 

  10. Lu, H., Yuille, A.L.: Ideal Observers for Detecting Motion: Correspondence Noise. In: NIPS 2005 (2005)

    Google Scholar 

  11. Morrone, M.C., Burr, D.C., Vaina, L.: Two stages of visual processing for radial and circular motion. Nature 376, 507–509 (1995)

    Article  Google Scholar 

  12. Morrone, M., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., Burr, D.C.: A cortical area that responds specifically to optic flow revealed by fMRI. Nature Neuroscience 3, 1322–1328 (2000)

    Article  Google Scholar 

  13. Nishida, S., Amano, K., Edwards, M., Badcock, D.R.: Global motion with multiple Gabors - A tool to investigate motion integration across orientation and space. In: VSS 2006 (2006)

    Google Scholar 

  14. Ramachandran, V.S., Anstis, S.M.: The perception of apparent motion. Scientific American 254, 102–109 (1986)

    Article  Google Scholar 

  15. Roth, S., Black, M.J.: On the Spatial Statistics of Optical Flow. In: International Conference of Computer Vision (2005)

    Google Scholar 

  16. Sekuler, R., Watamaniuk, S.N.J., Blake, R.: Perception of Visual Motion. In: Pashler, H. (ed.) Steven’s Handbook of Experimental Psychology, 3rd edn., J. Wiley Publishers, New York (2002)

    Google Scholar 

  17. Stocker, A.A., Simoncelli, E.P.: Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience 9(4), 578–585 (2006)

    Article  Google Scholar 

  18. Stocker, A.A., Simoncelli, E.: A Bayesian model of conditioned perception. In: Proceedings of Neural Information Processing Systems (2007)

    Google Scholar 

  19. Tanaka, K., Fukada, Y., Saito, H.: Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the MST area of the macaque monkey. Journal of Neurophysiology 62, 642–656 (1989)

    Google Scholar 

  20. Ullman, S.: The Interpretation of Structure from Motion. PhD Thesis. MIT (1979)

    Google Scholar 

  21. Weiss, Y., Adelson, E.H.: Slow and smooth: A Bayesian theory for the combination of local motion signals in human vision Technical Report 1624. Massachusetts Institute of Technology (1998)

    Google Scholar 

  22. Weiss, Y., Simoncelli, E.P., Adelson, E.H.: Motion illusions as optimal percepts. Nature Neuroscience 5, 598–604 (2002)

    Article  Google Scholar 

  23. Yuille, A.L., Grzywacz, N.M.: A computational theory for the perception of coherent visual motion. Nature 333, 71–74 (1988)

    Article  Google Scholar 

  24. Yuille, A.L., Grzywacz, N.M.: A Mathematical Analysis of the Motion Coherence Theory. International Journal of Computer Vision 3, 155–175 (1989)

    Article  Google Scholar 

  25. Yuille, A.L., Ullman, S.: Rigidity and Smoothness of Motion: Justifying the Amoothness Assumption in Motion Measurement. In: Ullman, S., Richards, W. (eds.) Image Understanding 1989, ch. 8 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, S., Lu, H., Lee, A., Yuille, A. (2009). Motion Integration Using Competitive Priors. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds) Statistical and Geometrical Approaches to Visual Motion Analysis. Lecture Notes in Computer Science, vol 5604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03061-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03061-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03060-4

  • Online ISBN: 978-3-642-03061-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics