View-Based Approaches to Spatial Representation in Human Vision

  • Andrew Glennerster
  • Miles E. Hansard
  • Andrew W. Fitzgibbon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5604)


In an immersive virtual environment, observers fail to notice the expansion of a room around them and consequently make gross errors when comparing the size of objects. This result is difficult to explain if the visual system continuously generates a 3-D model of the scene based on known baseline information from interocular separation or proprioception as the observer walks. An alternative is that observers use view-based methods to guide their actions and to represent the spatial layout of the scene. In this case, they may have an expectation of the images they will receive but be insensitive to the rate at which images arrive as they walk. We describe the way in which the eye movement strategy of animals simplifies motion processing if their goal is to move towards a desired image and discuss dorsal and ventral stream processing of moving images in that context. Although many questions about view-based approaches to scene representation remain unanswered, the solutions are likely to be highly relevant to understanding biological 3-D vision.


Spatial Representation Human Vision Reference Location Optic Centre Dorsal Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rogers, B.J., Graham, M.: Similarities between motion parallax and stereopsis in human depth perception. Vision Research 22, 261–270 (1982)CrossRefGoogle Scholar
  2. 2.
    Bradshaw, M.F., Rogers, B.J.: The interaction of binocular disparity and motion parallax in the computation of depth. Vision Research 36, 3457–3768 (1996)CrossRefGoogle Scholar
  3. 3.
    Bradshaw, M.F., Parton, A.D., Eagle, R.A.: The interaction of binocular disparity and motion parallax in deptermining perceived depth and perceived size. Perception 27, 1317–1331 (1998)CrossRefGoogle Scholar
  4. 4.
    Bradshaw, M.F., Parton, A.D., Glennerster, A.: The task-dependent use of binocular disparity and motion parallax information. Vision Research 40, 3725–3734 (2000)CrossRefGoogle Scholar
  5. 5.
    Fitzgibbon, A.W., Zisserman, A.: Automatic camera recovery for closed or open image sequences. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 311–326. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  7. 7.
    Foley, J.M.: Binocular distance perception. Psychological Review 87, 411–433 (1980)CrossRefGoogle Scholar
  8. 8.
    Gogel, W.C.: A theory of phenomenal geometry and its applications. Perception and Psychophysics 48, 105–123 (1990)CrossRefGoogle Scholar
  9. 9.
    Johnston, E.B.: Systematic distortions of shape from stereopsis. Vision Research 31, 1351–1360 (1991)CrossRefGoogle Scholar
  10. 10.
    Tittle, J.S., Todd, J.T., Perotti, V.J., Norman, J.F.: A hierarchical analysis of alternative representations in the perception of 3-D structure from motion and stereopsis. J. Exp. Psych.: Human Perception and Performance 21, 663–678 (1995)Google Scholar
  11. 11.
    Glennerster, A., Rogers, B.J., Bradshaw, M.F.: Stereoscopic depth constancy depends on the subject’s task. Vision Research 36, 3441–3456 (1996)CrossRefGoogle Scholar
  12. 12.
    Basri, R., Rivlin, E., Shimshoni, I.: Visual homing: Surfing on the epipoles. International Journal of Computer Vision 33, 117–137 (1999)CrossRefGoogle Scholar
  13. 13.
    Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Proceedings. Ninth IEEE International Conference on computer vision, pp. 1403–1410 (2003)Google Scholar
  14. 14.
    Newman, P., Ho, K.L.: SLAM-loop closing with visually salient features. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 635–642 (2005)Google Scholar
  15. 15.
    Gibson, J.J.: The ecological approach to visual perception. Houghton Mifflin, Boston (1979)Google Scholar
  16. 16.
    Ullman, S.: Against direct perception. Behavioural and Brain Sciences 3, 373–415 (1980)CrossRefGoogle Scholar
  17. 17.
    O’Regan, J.K., Noë, A.: A sensori-motor account of vision and visual consciousness. Behavioural and Brain Sciences 24, 939–1031 (2001)CrossRefGoogle Scholar
  18. 18.
    Glennerster, A., Tcheang, L., Gilson, S.J., Fitzgibbon, A.W., Parker, A.J.: Humans ignore motion and stereo cues in favour of a fictional stable world. Current Biology 16, 428–443 (2006)Google Scholar
  19. 19.
    Rauschecker, A.M., Solomon, S.G., Glennerster, A.: Stereo and motion parallax cues in human 3d vision: Can they vanish without trace? Journal of Vision 6, 1471–1485 (2006)Google Scholar
  20. 20.
    2d3 Ltd. Boujou 2 (2003),
  21. 21.
    Svarverud, E., Gilson, S.J., Glennerster, A.: Absolute and relative cues for location investigated using immersive virtual reality. In: Vision Sciences Society, Naples, Fl (2008)Google Scholar
  22. 22.
    Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002)CrossRefGoogle Scholar
  23. 23.
    O’Regan, J.K.: Solving the real mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology 46, 461–468 (1992)CrossRefGoogle Scholar
  24. 24.
    Schölkopf, B., Mallot, H.A.: View–based cognitive mapping and path planning. Adaptive Behavior 3, 311–348 (1995)CrossRefGoogle Scholar
  25. 25.
    Koenderink, J.J., van Doorn, A.J.: The internal representation of solid shape with respect to vision. Biological Cybernetics 32, 211–216 (1979)zbMATHCrossRefGoogle Scholar
  26. 26.
    Marr, D.: A theory of cerebellar cortex. J. Physiol (Lond.) 202, 437–470 (1969)Google Scholar
  27. 27.
    Albus, J.: A theory of cerebellar function. Mathematical Biosciences 10, 25–61 (1971)CrossRefGoogle Scholar
  28. 28.
    Miall, R.C., Weir, D.J., Wolpert, D.M., Stein, J.F.: Is the cerebellum a Smith predictor? Journal of Motor Behaviour 25, 203–216 (1993)Google Scholar
  29. 29.
    Carpenter, R.H.S.: Movements of the eyes. Pion, London (1988)Google Scholar
  30. 30.
    Land, M.F.: Why animals move their eyes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 185, 1432–1351 (1999)Google Scholar
  31. 31.
    Gilchrist, I.D., Brown, V., Findlay, J.M.: Saccades without eye movements. Nature 390, 130–131 (1997)CrossRefGoogle Scholar
  32. 32.
    Aloimonos, Y., Weiss, I., Bandopadhay, A.: Active vision. In: Proceedings of the International Conference on Computer Vision, London, UK, June 8–11, pp. 35–54 (1987)Google Scholar
  33. 33.
    Bandopadhay, A., Ballard, D.: Egomotion perception using visual tracking. Computational Intelligence 7, 39–47 (1990)CrossRefGoogle Scholar
  34. 34.
    Sandini, G., Tistarelli, M.: Active tracking strategy for monocular depth inference over multiple frames. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 13–27 (1990)CrossRefGoogle Scholar
  35. 35.
    Daniilidis, K.: Fixation simplifies 3D motion estimation. Computer Vision and Image Understanding 68, 158–169 (1997)CrossRefGoogle Scholar
  36. 36.
    Cohen, B., Reisine, H., Yokota, J.-I., Raphan, T.: The nucleus of the optic tract: Its function in gaze stabilization and control of visual-vestibular interaction. Annals of the New York Academy of Sciences 656, 277–296 (1992)CrossRefGoogle Scholar
  37. 37.
    Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., Iwai, E.: Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neuroscience 6, 145–157 (1986)Google Scholar
  38. 38.
    Perrone, J.A., Stone, L.S.: A model of self-motion estimation within primate extrastriate visual cortex. Vision Research 34, 2917–2938 (1994)CrossRefGoogle Scholar
  39. 39.
    Roy, J.P., Wurtz, R.H.: The role of disparity-sensitive cortical neurons in signalling the direction of self-motion. Nature 348, 160–162 (1990)CrossRefGoogle Scholar
  40. 40.
    Glennerster, A., Hansard, M.E., Fitzgibbon, A.W.: Fixation could simplify, not complicate, the interpretation of retinal flow. Vision Research 41, 815–834 (2001)CrossRefGoogle Scholar
  41. 41.
    Rolls, E.T., Bayliss, G.C.: Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey. Experimental Brain Research 65, 38–48 (1986)CrossRefGoogle Scholar
  42. 42.
    Booth, M.C.A., Rolls, E.T.: View-invariant representations of familiar objects by neurons in the inferior temporal cortex. Cerebral Cortex 8, 510–525 (1998)CrossRefGoogle Scholar
  43. 43.
    Georges-Francois, P., Rolls, E.T., Robertson, R.G.: Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. Cerebral Cortex 9, 197–212 (1999)CrossRefGoogle Scholar
  44. 44.
    Treves, A., Rolls, E.T.: Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (2004)CrossRefGoogle Scholar
  45. 45.
    Gillner, S., Mallot, H.A.: Navigation and acquisition of spatial knowledge in a virtual maze. Journal of Cognitive Neuroscience 10, 445–463 (1998)CrossRefGoogle Scholar
  46. 46.
    Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robotics and Autonomous Systems 30, 133–153 (2000)CrossRefGoogle Scholar
  47. 47.
    Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Learning view graphs for robot navigation. Autonomous Robots 5, 111–125 (1998)CrossRefGoogle Scholar
  48. 48.
    Cartwright, B.A., Collett, T.S.: Landmark learning in bees: experiments and models. Journal of Comparative Physiology 151, 521–543 (1983)CrossRefGoogle Scholar
  49. 49.
    Hong, J., Tan, X., Pinette, B., Weiss, R., Riseman, E.: Image-based homing. IEEE Control Systems Magazine 12(1), 38–45 (1992)CrossRefGoogle Scholar
  50. 50.
    Henriques, D.Y.P., Klier, E.M., Smith, M.A., Lowy, D., Crawford, J.D.: Gaze-centered remapping of remembered visual space in an open-loop pointing task. Journal of Neuroscience 18, 1583–1594 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrew Glennerster
    • 1
  • Miles E. Hansard
    • 2
  • Andrew W. Fitzgibbon
    • 3
  1. 1.University of ReadingReadingUK
  2. 2.INRIA Rhône-AlpesMontbonnotFrance
  3. 3.Microsoft ResearchCambridgeUK

Personalised recommendations