Skip to main content
  • 2470 Accesses

Abstract

Closed control loops in communication networks are becoming more and more common as network hardware becomes cheaper and use of the Internet expands. Feedback control systems in which control loops are closed through a real-time network are called NCSs. In an NCS, network-induced delays of variable length occur during data exchange between devices (sensor, controller, actuator) connected to the network. This can degrade the performance of the control system and can even destabilize it [111]. It is important to make these delays bounded and as small as possible. On the other hand, it is also necessary to design a controller that guarantees the stability of an NCS for delays less than the maximum allowable delay bound (MADB) [12], which is also called the maximum allowable transfer interval (MATI) [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Y. Chow and Y. Tipsuwan. Gain adaptation of networked DC motor controllers on QoS variations. IEEE Transactions on Industrial Electronics, 50(5): 936–943, 2003.

    Article  Google Scholar 

  2. K. C. Lee, K. Lee, and M. H. Lee. QoS-based remote control of networked control systems via profibus token passing protocol. IEEE Transactions on Industrial Informatics, 1(3): 183–191, 2005.

    Article  Google Scholar 

  3. K. C. Lee, K. Lee, and M. H. Lee. Worst case communication delay of real-time industrial switched Ethernet with multiple levels. IEEE Transactions on Industrial Electronics, 53(5): 1669–1676, 2006.

    Article  Google Scholar 

  4. Y. Tipsuwan and M. Y. Chow. Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation-part I: networked control. IEEE Transactions on Industrial Electronics, 51(6): 1228–1237, 2004.

    Article  Google Scholar 

  5. G. Walsh, O. Beldiman, and L. Bushnell. Asymptotic behavior of nonlinear networked control systems. IEEE Transactions on Automatic Control, 46(7): 1093–1097, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Walsh, H. Ye, and L. Bushnell. Stability analysis of networked control systems. IEEE Transactions on Control Systems Technology, 10(3): 438–446, 2002.

    Article  Google Scholar 

  7. F. W. Yang, Z. D. Wang, Y. S. Hung, and M. Gani. H∞ control for networked systems with random communication delays. IEEE Transactions on Automatic Control, 51(3): 511–518, 2006.

    Article  MathSciNet  Google Scholar 

  8. T. C. Yang. Networked control systems: a brief survey. IEE Proceedings—Control Theory & Applications, 153(4): 403–412, 2006.

    Article  Google Scholar 

  9. W. Zhang, M. S. Branicky, and S. M. Phillips. Stability of networked control systems. IEEE Control Systems Magazine, 21(1): 84–99, 2001.

    Article  Google Scholar 

  10. H. Gao, T. Chen, and J. Lam. A new delay system approach to network-based control. Automatica, 44(1): 39–52, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Gao and T. Chen. Network-Based H∞ Output Tracking Control. IEEE Transactions on Automatic Control, 53(3): 655–667, 2008

    Article  MathSciNet  Google Scholar 

  12. D. Kim, Y. Lee, W. Kwon, and H. Park. Maximum allowable delay bounds of networked control systems. Control Engineering Practice, 11, 1301–1313, 2003.

    Article  Google Scholar 

  13. K. Gu, V. L. Kharitonov, and J. Chen. Stability of Time-Delay Systems. Boston: Birkhäuser, 2003.

    MATH  Google Scholar 

  14. H. Gao, J. Lam, C. Wang, and Y. Wang. Delay-dependent output-feedback stabilization of discrete-time systems with time-varying state delay. IEE Proceedings—Control Theory & Applications, 151(6): 691–698, 2004.

    Article  MathSciNet  Google Scholar 

  15. C. Lin, Q. G. Wang, and T. H. Lee. A less conservative robust stability test for linear uncertain time-delay systems. IEEE Transactions on Automatic Control, 51(1): 87–91, 2006.

    Article  MathSciNet  Google Scholar 

  16. X. Jiang and Q. L. Han. On H∞ control for linear systems with interval time-varying delay. Automatica, 41(12): 2099–2106, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. K. Boukas and N. F. Al-Muthairi. Delay-dependent stabilization of singular linear systems with delays. International Journal of Innovative Computing, Information and Control, 2(2): 283–291, 2006.

    Google Scholar 

  18. X. M. Zhang, M. Wu, J. H. She, and Y. He. Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica, 41(8): 1405–1412, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Fridman and U. Shaked. Delay-dependent stability and H∞ control: constant and time-varying delays. International Journal of Control, 76(1): 48–60, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Gao and C. Wang. Comments and further results on “A descriptor system approach to H∞ control of linear time-delay systems”. IEEE Transactions on Automatic Control, 48(3): 520–525, 2003.

    Article  MathSciNet  Google Scholar 

  21. Q. L. Han. On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty. Automatica, 40(6): 1087–1092, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Wu, Y. He, J. H. She, and G. P. Liu. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 40(8): 1435–1439, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  23. Y. He, M. Wu, J. H. She, and G. P. Liu. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE Transactions on Automatic Control, 49(5): 828–832, 2004.

    Article  MathSciNet  Google Scholar 

  24. H. Park, Y. Kim, D. Kim, and W. Kwon. A scheduling method for network based control systems. IEEE Transactions on Control Systems Technology, 10(3): 318–330, 2002.

    Article  Google Scholar 

  25. Y. J. Pan, H. J. Marquez, and T. Chen. Stabilization of remote control systems with unknown time-varying delays by LMI techniques. International Journal of Control, 79(7): 752–763, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Yue, Q. L. Han, and C. Peng. State feedback controller design of networked control systems. IEEE Transactions on Circuits and Systems II, 51(11): 640–644, 2004.

    Article  Google Scholar 

  27. M. Wu, Y. He, and J. H. She. New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Transactions on Automatic Control, 49(12): 2266–2271, 2004.

    Article  MathSciNet  Google Scholar 

  28. D. Yue, Q. L. Han, and J. Lam. Network-based robust H∞ control of systems with uncertainty. Automatica, 41(6): 999–1007, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  29. Y. He, Q. G. Wang, L. H. Xie, and C. Lin. Further improvement of freeweighting matrices technique for systems with time-varying delay. IEEE Transactions on Automatic Control, 52(2): 293–299, 2007.

    Article  MathSciNet  Google Scholar 

  30. Y. He, Q. G. Wang, C. Lin, and M. Wu. Delay-range-dependent stability for systems with time-varying delay. Automatica, 43(2): 371–376, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Xu, J. Lam, and Y. Zou. New results on delay-dependent robust H∞ control for systems with time-varying delays. Automatica, 42(2): 343–348, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  32. Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee. Delay-dependent robust stabilization of uncertain state-delayed systems. International Journal of Control, 74(14): 1447–1455, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  33. Y. He, G. P. Liu, D. Rees, and M. Wu. Improved stabilization method for networked control systems. IET Control Theory & Applications, 1(6): 1580–1585, 2007.

    Article  Google Scholar 

  34. Y. He, Q. G. Wang, C. Lin, and M. Wu. Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems. International Journal of Robust and Nonlinear Control, 15(18): 923–933, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Xu, J. Lam, and Y. Zou. Simplified descriptor system approach to delay-dependent stability and performance analysis for time-delay systems. IEE Proceedings-Control Theory & Applications, 152(2): 147–151, 2005.

    Article  MathSciNet  Google Scholar 

  36. E. L. Ghaoui, F. Oustry, and M. AitRami. A cone complementarity linearization algorithms for static output feedback and related problems. IEEE Transactions on Automatic Control, 42(8): 1171–1176, 1997.

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Stability and Stabilization of NCSs. In: Stability Analysis and Robust Control of Time-Delay Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03037-6_12

Download citation

Publish with us

Policies and ethics