Skip to main content
  • 2524 Accesses

Abstract

In many physical and biological phenomena, the rate of variation in the system state depends on past states. This characteristic is called a delay or a time delay, and a system with a time delay is called a time-delay system. Timedelay phenomena were first discovered in biological systems and were later found in many engineering systems, such as mechanical transmissions, fluid transmissions, metallurgical processes, and networked control systems. They are often a source of instability and poor control performance. Time-delay systems have attracted the attention of many researchers [13] because of their importance and widespread occurrence. Basic theories describing such systems were established in the 1950s and 1960s; they covered topics such as the existence and uniqueness of solutions to dynamic equations, stability theory for trivial solutions, etc. That work laid the foundation for the later analysis and design of time-delay systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. K. Hale and S. M. Verduyn Lunel. Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993.

    MATH  Google Scholar 

  2. S. I. Niculescu. Delay Effects on Stability: A Robust Control Approach. London: Springer, 2001.

    MATH  Google Scholar 

  3. K. Gu, V. L. Kharitonov, and J. Chen. Stability of Time-Delay Systems. Boston: Birkhäuser, 2003.

    MATH  Google Scholar 

  4. N. P. Bhatia and G. P. Szegö. Stability Theory of Dynamical Systems. New York: Springer-Verlag, 1970.

    MATH  Google Scholar 

  5. J. P. LaSalle. The Stability of Dynamical Systems. Philadelphia: SIAM, 1976.

    MATH  Google Scholar 

  6. X. X. Liao, L. Q. Wang, and P. Yu. Stability of Dynamical Systems. London: Elsevier, 2007.

    MATH  Google Scholar 

  7. T. Mori and H. Kokame. Stability of Ax(t)=Ax(t)+Bx(t-τ). IEEE Transactions on Automatic Control, 34(4): 460–462, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. D. Brierley, J. N. Chiasson, E. B. Lee, and S. H. Zak. On stability independent of delay. IEEE Transactions on Automatic Control, 27(1): 252–254, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.

    MATH  Google Scholar 

  10. P. Richard. Time-delay systems: An overview of some recent advances and open problems. Automatica, 39(10): 1667–1694, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Gu. Discretized LMI set in the stability problem for linear uncertain timedelay systems. International Journal of Control, 68(4): 923–934, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Gu. A generalized discretization scheme of Lyapunov functional in the stability problem of linear uncertain time-delay systems. International Journal of Robust and Nonlinear Control, 9(1): 1–4, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Gu. A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. International Journal of Control, 74(10): 967–976, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  14. Q. L. Han and K. Gu. On robust stability of time-delay systems with normbounded uncertainty. IEEE Transactions on Automatic Control, 46(9): 1426–1431, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Fridman and U. Shaked. Descriptor discretized Lyapunov functional method: analysis and design. IEEE Transactions on Automatic Control, 51(5): 890–897, 2006.

    Article  MathSciNet  Google Scholar 

  16. P. Park. A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Transactions on Automatic Control, 44(4): 876–877, 1999.

    Article  MATH  Google Scholar 

  17. Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee. Delay-dependent robust stabilization of uncertain state-delayed systems. International Journal of Control, 74(14): 1447–1455, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Fridman and U. Shaked. Delay-dependent stability and H∞ control: constant and time-varying delays. International Journal of Control, 76(1): 48–60, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Gu and S. I. Niculescu. Additional dynamics in transformed time delay systems. IEEE Transactions on Automatic Control, 45(3): 572–575, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Gu and S. I. Niculescu. Further remarks on additional dynamics in various model transformations of linear delay systems. IEEE Transactions on Automatic Control, 46(3): 497–500, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Fridman. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems & Control Letters, 43(4): 309–319, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Fridman and U. Shaked. An improved stabilization method for linear timedelay systems. IEEE Transactions on Automatic Control, 47(11): 1931–1937, 2002.

    Article  MathSciNet  Google Scholar 

  23. H. Gao and C. Wang. Comments and further results on “A descriptor system approach to H∞ control of linear time-delay systems”. IEEE Transactions on Automatic Control, 48(3): 520–525, 2003.

    Article  MathSciNet  Google Scholar 

  24. Y. S. Lee, Y. S. Moon, W. H. Kwon, and P. G. Park. Delay-dependent robust H∞ control for uncertain systems with a state-delay. Automatica, 40(1): 65–72, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. I. Niculescu. On delay-dependent stability under model transformations of some neutral linear systems. International Journal of Control, 74(6): 608–617, 2001.

    Article  MathSciNet  Google Scholar 

  26. S. I. Niculescu. Optimizing model transformations in delay-dependent analysis of neutral systems: A control-based approach. Nonlinear Analysis, 47(8): 5378–5390, 2001.

    Article  MathSciNet  Google Scholar 

  27. Q. L. Han. Robust stability of uncertain delay-differential systems of neutral type. Automatica, 38(4): 718–723, 2002.

    Article  Google Scholar 

  28. Q. L. Han. Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays. IMA Journal of Mathematical Control and Information, 20(4): 371–386, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  29. E. Fridman and U. Shaked. A descriptor system approach to H∞ control of linear time-delay systems. IEEE Transactions on Automatic Control, 47(2): 253–270, 2002.

    Article  MathSciNet  Google Scholar 

  30. E. Fridman and U. Shaked. H∞ — Control of linear state-delay descriptor systems: an LMI approach. Linear Algebra and Its Applications, 3(2): 271–302, 2002.

    Article  MathSciNet  Google Scholar 

  31. E. Fridman and U. Shaked. On delay-dependent passivity. IEEE Transactions on Automatic Control, 47(4): 664–669, 2002.

    Article  MathSciNet  Google Scholar 

  32. E. Fridman and U. Shaked. Parameter dependent stability and stabilization of uncertain time-delay systems. IEEE Transactions on Automatic Control, 48(5): 861–866, 2003.

    Article  MathSciNet  Google Scholar 

  33. E. Fridman, U. Shaked, and L. Xie. Robust H∞ filtering of linear systems with time-varying delay. IEEE Transactions on Automatic Control, 48(1): 159–165, 2003.

    Article  MathSciNet  Google Scholar 

  34. E. Fridman and U. Shaked. An improved delay-dependent H∞ filtering of linear neutral systems. IEEE Transactions on Signal Processing, 52(3): 668–673, 2004.

    Article  MathSciNet  Google Scholar 

  35. E. Fridman. Stability of linear descriptor systems with delay: a Lyapunov-based approach. Journal of Mathematical Analysis and Applications, 273(1): 24–44, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Wu, Y. He, J. H. She, and G. P. Liu. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 40(8): 1435–1439, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Wu, S. P. Zhu, and Y. He. Delay-dependent stability criteria for systems with multiple delays. Proceedings of 23rd Chinese Control Conference, Wuxi, China, 625–629, 2004.

    Google Scholar 

  38. Y. He, M. Wu, J. H. She, and G. P. Liu. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Systems & Control Letters, 51(1): 57–65, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  39. Y. He and M. Wu. Delay-dependent robust stability for neutral systems with mixed discrete-and neutral-delays. Journal of Control Theorey and Applications, 2(4): 386–392, 2004.

    Article  MathSciNet  Google Scholar 

  40. Y. He, M. Wu, and J. H. She. Delay-dependent robust stability criteria for neutral systems with time-varying delay. Proceedings of 23rd Chinese Control Conference, Wuxi, China, 647–650, 2004.

    Google Scholar 

  41. Y. He, M. Wu, J. H. She, and G. P. Liu. Robust stability for delay Lur’e control systems with multiple nonlinearities. Journal of Computational and Applied Mathematics, 176(2): 371–380, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Wu, Y. He, and J. H. She. Delay-dependent robust stability and stabilization criteria for uncertain neutral systems. Acta Automatica Sinica, 31(4): 578–583, 2005.

    MathSciNet  Google Scholar 

  43. Y. He and M. Wu. Delay-dependent conditions for absolute stability of Lur’e control systems with time-varying delay. Acta Automatica Sinica, 31(3): 475–478, 2005.

    MathSciNet  Google Scholar 

  44. M. Wu, Y. He, and J. H. She. New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Transactions on Automatic Control, 49(12): 2266–2271, 2004.

    Article  MathSciNet  Google Scholar 

  45. M. Wu and Y. He. Parameter-dependent Lyapunov functional for systems with multiple time delays. Journal of Control Theory and Applications, 2(3): 239–245, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  46. Y. He, M. Wu, J. H. She, and G. P. Liu. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic type uncertainties. IEEE Transactions on Automatic Control, 49(5): 828–832, 2004.

    Article  MathSciNet  Google Scholar 

  47. Y. He, M. Wu, and J. H. She. Improved bounded-real-lemma representation and H∞ control for systems with polytopic uncertainties. IEEE Transactions on Circuits and Systems II, 52(7): 380–383, 2005.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Introduction. In: Stability Analysis and Robust Control of Time-Delay Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03037-6_1

Download citation

Publish with us

Policies and ethics