Skip to main content

References

  • Chapter
  • First Online:
Methods in Modern Biophysics
  • 1611 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abkevich VI, Gutin AM, Shakhnovich EI (1995) Impact of local and nonlocal interactions on the thermodynamics and kinetics of protein folding. J Mol Biol 252:460–471

    Article  Google Scholar 

  • Abola EE, Sussman JL, Prilusky J, Manning NO (1997) Protein data bank archives of three-dimensional macromolecular structures. Methods Enzymol 277:556–571

    Article  MATH  Google Scholar 

  • Achari A, Hale SP, Howard AJ, Clore GM, Gronenborn AM, Hardman KD, Whitlow M (1992) 1.67 Å X-ray structure of the B2 immunoglobulin-binding domain of streptococcal protein G and comparison to the NMR structure of the B1 domain. Biochemistry 31:10449–10457

    Article  Google Scholar 

  • Adam GC, Sorensen EJ, Cravatt BF (2002a) Chemical strategies for functional proteomics. Mol Cell Proteomics 1:781–790

    Google Scholar 

  • Adam GC, Sorensen EJ, Cravatt BF (2002b) Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat Biotechnol 20:805–809

    Google Scholar 

  • Aitio H, Laakso T, Pihlajamaa T, Torkkeli M, Kilpelainen I, Drakenberg T, Serimaa R, Annila A (2001) Characterization of apo and partially saturated states of calerythrin, an EF-hand protein from S. erythraea: a molten globule when deprived of Ca2+. Protein Sci 10:74–82

    Article  Google Scholar 

  • Aitken A, Learmonth M (2002) Protein identification by in-gel digestion and mass spectrometric analysis. Mol Biotechnol 20:95–97

    Article  Google Scholar 

  • Aldaz H, Rice LM, Stearns T, Agard DA (2005) Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature 435:523–527

    Article  ADS  Google Scholar 

  • Allison DP, Hinterdorfer P, Han W (2002) Biomolecular force measurements and the atomic force microscope. Curr Opin Biotechnol 13:47–51

    Article  Google Scholar 

  • Alm E, Baker D (1999) Matching theory and experiment in protein folding. Curr Opin Struct Biol 9:189–196

    Article  Google Scholar 

  • Andersen KV, Poulsen FM (1992) Three-dimensional structure in solution of acyl-coenzyme A binding protein from bovine liver. J Mol Biol 226:1131–1141

    Article  Google Scholar 

  • Anderson RJ, Bendell DJ, Garnett I, Groundwater PW, Lough WJ, Mills MJ, Savery D, Shattock PE (2002) Identification of indolyl-3-acryloylglycine in the urine of people with autism. J Pharm Pharmacol 54:295–298

    Article  Google Scholar 

  • Andolfi L, Cannistraro S, Canters GW, Facci P, Ficca AG, van Amsterdam IM, Verbeet MP (2002) A poplar plastocyanin mutant suitable for adsorption onto gold surface via disulfide bridge. Arch Biochem Biophys 399:81–88

    Article  Google Scholar 

  • Andretzky P, Lindner MW, Herrmann JM, Schultz A, Konzog M, Kiesewetter F, Häusler G (1998) Optical coherence tomography by “Spectral radar”. SPIE 3567:78–87

    Article  ADS  Google Scholar 

  • Appel SH, Beers DR, Henkel JS, Zhao W (2008) Novel therapeutic targets in neurodegenerative diseases: lessons from amyotrophic lateral sclerosis. Curr Neurol Neurosci Rep 8:353–355

    Article  Google Scholar 

  • Åqvist J (1999) Long-range electrostatic effects on peptide folding. FEBS Lett 457:414–418

    Article  Google Scholar 

  • Arai S, Hirai M (1999) Reversibility and hierarchy of thermal transition of hen egg-white lysozyme studied by small angle X-ray scattering. Biophys J 76:2192–2197

    Article  Google Scholar 

  • Arkin IT (2006) Isotope-edited IR spectroscopy for the study of membrane proteins. Curr Opin Chem Biol 10:394–401

    Article  Google Scholar 

  • Armitage S, Saywell S, Roux C, Lennard C, Greenwood P (2001) The analysis of forensic samples using laser micro-pyrolysis gas chromatography mass spectrometry. J Forensic Sci 46:1043–1052

    Google Scholar 

  • Asbury GR, Hill HH (2000) Separation of amino acids by ion mobility spectrometry. J Chromatogr A 902:433–437

    Article  Google Scholar 

  • Ash EA, Nicholls G (1972) Super-resolution aperture scanning microscope. Nature 237:510–513

    Article  ADS  Google Scholar 

  • Astley OM, Donald AM (2001) A small angle X-ray scattering study of the effect of hydration on the microstructure of flax fibers. Biomacromolecules 2:672–680

    Article  Google Scholar 

  • Avseenko NV, Morozova TY, Ataullakhanov FI, Morozov VN (2001) Immobilization of proteins in immunochemical microarrays fabricated by electrospray deposition. Anal Chem 73:6047–6052

    Article  Google Scholar 

  • Avseenko NV, Morozova TY, Ataullakhanov FI, Morozov VN (2002) Immunoassay with multicomponent protein microarrays fabricated by electrospray deposition. Anal Chem 74:927–933

    Article  Google Scholar 

  • Back T (1996) Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press

    Google Scholar 

  • Bada M, Walther D, Arcangioli B, Doniach S, Delarue M (2000) Solution structural studies and low-resolution model of the Schizosaccharomyces pombe sap1 protein. J Mol Biol 300:563–574

    Article  Google Scholar 

  • Bailey JA, Tomson FL, Mecklenburg SL, MacDonald GM, Katsonouri A, Puustinen A, Gennis RB, Woodruff WH, Dyer RB (2002) Time-resolved step-scan Fourier transform infrared spectroscopy of the CO adducts of bovine cytochrome c oxidase and of cytochrome bo3 from Escherichia coli. Biochemistry 41:2675–2683

    Article  Google Scholar 

  • Baim MA, Eatherton RL, Hill HH (1983) Ion mobility detector for gas chromatography with a direct photoionization source. Anal Chem 55:1761–1766

    Article  Google Scholar 

  • Baker D (2000) A surprising simplicity to protein folding. Nature 405:39–42

    Article  ADS  Google Scholar 

  • Baker D, DeGrado WF (1999) Engineering and design – editorial overview. Curr Opin Struct Biol 9:485–486

    Article  Google Scholar 

  • Baldwin RL (2007) Energetics of protein folding. J Mol Biol 371:283–301

    Article  Google Scholar 

  • Banci L, Baumeister W, Enfedaque J, Heinemann U, Schneider G, Silman I, Sussman JL (2007) Structural proteomics: from the molecule to the system. Nat Struct Mol Biol 14:3–4

    Article  Google Scholar 

  • Barshick SA, Wolf DA, Vass AA (1999) Differentiation of microorganisms based on pyrolysis ion trap mass spectrometry using chemical ionization. Anal Chem 71:633–641

    Article  Google Scholar 

  • Barth A (2002) Selective monitoring of 3 out of 50,000 protein vibrations. Biopolymers 67:237–241

    Article  Google Scholar 

  • Baumbach JI, Eiceman GA (1999) Ion mobility spectrometry: arriving on site and moving beyond a low profile. Appl Spectrosc 53:338A–355A

    Article  ADS  Google Scholar 

  • Baumbach JI, Stach J (ed) (1998) Recent Developments in Ion Mobility Spectrometry. International Society for Ion Mobility Spectrometry, Dortmund, Germany

    Google Scholar 

  • Beamer LJ, Pabo CO (1992) Refined 1.8 Å crystal structure of the λ-repressor-DNA complex. J Mol Biol 227:177–196

    Article  Google Scholar 

  • Beegle LW, Kanik I, Matz L, Hill HH (2001) Electrospray ionization high-resolution ion mobility spectrometry for the detection of organic compounds, 1. Amino acids. Anal Chem 73:3028–3034

    Article  Google Scholar 

  • Begley P, Corbin R, Foulger BE, Simmonds PG (1991) Photoemissive ionization source for ion mobility detectors. J Chromatogr 588:239–249

    Article  Google Scholar 

  • Benoit M, Gabriel D, Gerisch G, Gaub HE (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biol 2:313–317

    Article  Google Scholar 

  • Berezovsky IN, Zeldovich KB, Shakhnovich EI (2007) Positive and negative design in stability and thermal adaptation of natural proteins. PLoS Comput Biol 3:e52

    Article  ADS  Google Scholar 

  • Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35:260–274

    Article  Google Scholar 

  • Bernal JD (1939) The structure of proteins. Nature 143:663–667

    Article  ADS  Google Scholar 

  • Bernal JD, Crowfoot D (1934) X-ray photographs of crystalline pepsin. Nature 138:133–134

    Google Scholar 

  • Betzig E, Harootunian A, Isaacson M, Kratschmer E, Lewis A (1986) Near-field scanning optical microscopy (NSOM): development and biophysical applications. Biophys J 49:269–279

    Article  Google Scholar 

  • Betzig E, Trautmann JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251:1468–1470

    Article  ADS  Google Scholar 

  • Betzig E, Finn PL, Weiner JS (1992) Combined shear force and near-field scanning optical microscopy. Appl Phys Lett 60:2484–2486

    Article  ADS  Google Scholar 

  • Binnig G, Rohrer H (1987) Scanning tunneling microscopy – from birth to adolescence. Rev Mod Phys 59, No 3, Part I

    Google Scholar 

  • Binnig G, Gerber C, Quate CF (1986) Atomic force microscopy. Phys Rev Lett 56:930–933

    Article  ADS  Google Scholar 

  • Binnig G, Rohrer H, Gerber C, Weibel E (1982a) Vacuum tunneling. Physica 109 & 110B 2075–2077

    Google Scholar 

  • Binnig G, Rohrer H, Gerber C, Weibel E (1982b) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Google Scholar 

  • Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7×7 reconstruction on Si(111) resolved in real space. Phys Rev Lett 50:120–123

    Article  ADS  Google Scholar 

  • Bird GM, Keller RA (1976) Vapor concentration dependence of plasmagrams. J Chromatographic Sci 14:574–577

    Google Scholar 

  • Birolo L, Dal Piaz F, Pucci P, Marino G (2002) Structural characterization of the M* partly folded intermediate of wild-type and P138A aspartate aminotransferase from Escherichia coli. J Biol Chem 277:17428–17437

    Article  Google Scholar 

  • Biscarini F, Cavallini M, Leigh DA, Leon S, Teat SJ, Wong JK, Zerbetto F (2002) The effect of mechanical interlocking on crystal packing: predictions and testing. J Am Chem Soc 124:225–233

    Article  Google Scholar 

  • Blanchard WC, Bacon AT (1989) Ion mobility spectrometer. US Patent 4,797,554

    Google Scholar 

  • Blomberg A (2002) Use of two-dimensional gels in yeast proteomics. Methods Enzymol 350:559–584

    Article  Google Scholar 

  • Boettner M, Prinz B, Holz C, Stahl U, Lang C (2002) High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J Biotechnol 99:51–62

    Article  Google Scholar 

  • Boisvert DC, Wang J, Otwinowski Z, Horwich AL, Sigler PB (1996) The 2.4 Å crystal Structure of the bacterial chaperonin GroEL complexed with ATP γ S Nature Struct Biol 3:170–177

    Article  Google Scholar 

  • Bork P (2002) Comparative analysis of protein interaction networks. Bioinformatics 18 Suppl 2:S64

    Google Scholar 

  • Borsdorf H, Rudolph M (2001) Gas-phase ion mobility studies of constitutional isomeric hydrocarbons using different ionization techniques. Int J Mass Spectrom 208:67–72

    Article  Google Scholar 

  • Borsdorf H, Schelhorn H, Flachowsky J, Döring HR, Stach J (2000) Corona discharge ion mobility spectrometry of aliphatic and aromatic hydrocarbons. Anal Chim Acta 403:235–242

    Article  Google Scholar 

  • Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578–586

    Article  ADS  Google Scholar 

  • Brask J, Jensen KJ (2000) Carbopeptides: chemoselective ligation of peptide aldehydes to an aminooxy-functionalized D-galactose template. J Pept Sci 6:290–299

    Article  Google Scholar 

  • Brewer SH, Song B, Raleigh DP, Dyer RB (2007) Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy. Biochemistry 46:3279–3285

    Article  Google Scholar 

  • Brown DR, Wong BS, Haifiz F, Clive C, Haswell SJ, Jones IM (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem J 344:1–5

    Article  Google Scholar 

  • Brown DR, Hafiz F, Glasssmith LL, Wong BS, Jones IM, Clive C, Haswell SJ (2000) Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J 19:1180–1186

    Article  Google Scholar 

  • Bruckbauer A, Ying L, Rothery AM, Korchev YE, Klenerman D (2002a) Characterization of a novel light source for simultaneous optical and scanning ion conductance microscopy. Anal Chem 74:2612–2616

    Google Scholar 

  • Bruckbauer A, Ying L, Rothery AM, Zhou D, Shevchuk AI, Abell C, Korchev YE, Klenerman D (2002b) Writing with DNA and protein using a nanopipet for controlled delivery. J Am Chem Soc 124:8810–8811

    Google Scholar 

  • Bryden WA (1995) Tiny-TOF-MALDI mass spectrometry for particulate drug and explosives detection. 3rd Symposium on Research & Development, Kossiakoff Center, The Johns Hopkins University

    Google Scholar 

  • Budovich VL, Mikhailov AA, Arnold G (1999) Ion mobility spectrometer. US Patent 5,969,349

    Google Scholar 

  • Burke JR (1992) Ion mobility detector. US Patent 5,162,649

    Google Scholar 

  • Burton RE, Huang GS, Daugherty MA, Fullbright PW, Oas TG (1996) Microsecond protein folding through a compact transition state. J Mol Biol 263:311–322

    Article  Google Scholar 

  • Burton RE, Huang GS, Daugherty MA, Calderone TL, Oas TG (1997) The energy landscape of a fast-folding protein mapped by Ala→Gly substitutions. Nature Struct Biol 4:305–310

    Article  Google Scholar 

  • Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10:279–285

    Article  Google Scholar 

  • Butler BC, Hanchett RH, Rafailov H, MacDonald G (2002) Investigating structural changes induced by nucleotide binding to RecA using difference FTIR. Biophys J 82:2198–2210

    Article  Google Scholar 

  • Calvo EJ, Danilowicz C, Wolosiuk A (2002) Molecular “wiring” enzymes in organized nanostructures. J Am Chem Soc 124:2452–2453

    Article  Google Scholar 

  • Campbell DN, Spangler GE, Davis RC Jr, Fafaul EF, Carrico JP Jr (1991) All ceramic ion mobility spectrometer cell. US Patent 5,021,654

    Google Scholar 

  • Canady MA, Tsuruta H, Johnson JE (2001) Analysis of rapid, large-scale protein quaternary structural changes: time-resolved X-ray solution scattering of Nudaurelia capensis Ω virus (NΩV) maturation. J Mol Biol 311:803–814

    Article  Google Scholar 

  • Canet D, Last AM, Tito P, Sunde M, Spencer A, Archer DB, Redfield C, Robinson CV, Dobson CM (2002) Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nature Struct Biol 9:308–315

    Article  Google Scholar 

  • Carnahan BL, Tarassov AS (1995) Ion mobility spectrometer. US Patent 5,420,424

    Google Scholar 

  • Carnahan BL, Tarassov AS (1998) Recirculating filtration system for use with a transportable ion mobility spectrometer. US Patent 5,723,861

    Google Scholar 

  • Caroll DI (1972) Apparatus and methods for separating, detecting, and measuring trace gases. US Patent 3,668,383

    Google Scholar 

  • Caroll DI, Cohen MJ, Wernlund RF (1971) Apparatus and methods for separating, detecting, and measuring trace gases with enhanced resolution. US Patent 3,626,180

    Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96:3694–3699

    Article  ADS  Google Scholar 

  • Carven GJ, Stern LJ (2005) Probing the ligand-induced conformational change in HLA-DR1 by selective chemical modification and mass spectrometric mapping. Biochemistry 44:13625–13637

    Article  Google Scholar 

  • Casari G, Sippl MJ (1992) Structure-derived hydrophobic potential – hydrophobic potential derived from X-ray structures of globular proteins is able to identify native folds. J Mol Biol 224:725–732

    Article  Google Scholar 

  • Celis JE, Celis P, Palsdottir H, Ostergaard M, Gromov P, Primdahl H, Orntoft TF, Wolf H, Celis A, Gromova I (2002) Proteomic strategies to reveal tumor heterogeneity among urothelial papillomas. Mol Cell Proteomics 1:269–279

    Article  Google Scholar 

  • Chacon P, Moran F, Diaz JF, Pantos E, Andreu JM (1998) Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys J 74:2760–2775

    Article  Google Scholar 

  • Chait BT, Wang R, Beavis RC, Kent SB (1993) Protein ladder sequencing. Science 262:89–92

    Article  ADS  Google Scholar 

  • Chambert R, Petit-Glatron MF (1999) Anionic polymers of Bacillus subtilis cell wall modulate the folding rate of secreted proteins. FEMS Microbiol. Lett 179:43–47

    Article  Google Scholar 

  • Chan HS (1998) Protein folding: matching speed and locality. Nature 392:761–763

    Article  ADS  Google Scholar 

  • Chan HS (1999) Folding alphabets. Nature Struct Biol 6:994–996

    Article  ADS  Google Scholar 

  • Chan HS (2000) Modeling protein density of states: additive hydrophobic effects are insufficient for calorimetric two-state cooperativity. Proteins 40:543–571

    Article  Google Scholar 

  • Chang AM, Hallen HD, Harriott L, Hess HF, Kao HL, Kwo J, Miller RE, Wolfe R, van der Ziel J, Chang TY (1992a) Scanning Hall probe microscopy. Appl Phys Lett 61:1974–1976

    Google Scholar 

  • Chang AM, Hallen HD, Hess HF, Kao HL, Kwo J, Sudbø A, Chang TY (1992b) Scanning Hall probe microscopy of a vortex and field fluctuations in La1.85Sr0.15CO4 films. Europhys Lett 20:645–650

    Google Scholar 

  • Chang JY, Li L, Bulychev A (2000a) The underlying mechanism for the diversity of disulfide folding pathways. J Biol Chem 275:8287–8289

    Google Scholar 

  • Chang JY, Li L, Canals F, Aviles FX (2000b) The unfolding pathway and conformational stability of potato carboxypeptidase inhibitor. J Biol Chem 275:14205–14211

    Google Scholar 

  • Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82:2970–2981

    Article  Google Scholar 

  • Chen SJ, Dill KA (2000) RNA folding energy landscapes. Proc Natl Acad Sci USA 97:646–651

    Article  ADS  Google Scholar 

  • Chen L, Wildegger G, Kiefhaber T, Hodgson KO, Doniach S (1998) Kinetics of lysozyme refolding: structural characterization of a non-specifically collapsed state using time-resolved X-ray scattering. J Mol Biol 276:225–237

    Article  Google Scholar 

  • Chen J, Chen Y, Gong P, Jiang Y, Li YM, Zhao YF (2002a) Novel phosphoryl derivatization method for peptide sequencing by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom 16:531–536

    Google Scholar 

  • Chen L, Haushalter KA, Lieber CM, Verdine GL (2002b) Direct visualization of a DNA glycosylase searching for damage. Chem Biol 9:345–350

    Google Scholar 

  • Cheng J, Wu L, Heller MJ, Sheldon E, Diver J, O’Connell JP, Smolko D, Jalali S, Willoughby D (2002) Integrated portable biological detection system. US Patent 6,403,367

    Google Scholar 

  • Cherny DI, Jovin TM (2001) Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J Mol Biol 313:295–307

    Article  Google Scholar 

  • Cho SJ, Quinn AS, Stromer MH, Dash S, Cho J, Taatjes DJ, Jena BP (2002) Structure and dynamics of the fusion pore in live cells. Cell Biol Int 26:35–42

    Article  Google Scholar 

  • Choy WY, Mulder FA, Crowhurst KA, Muhandiram DR, Millett IS, Doniach S, Forman-Kay JD, Kay LE (2002) Distribution of molecular size within an unfolded state ensemble using small angle X-ray scattering and pulse field gradient NMR techniques. J Mol Biol 316:101–112

    Article  Google Scholar 

  • Chrencik JE, Brooun A, Zhang H, Mathews II, Hura GL, Foster SA, Perry JJ, Streiff M, Ramage P, Widmer H, Bokoch GM, Tainer JA, Weckbecker G, Kuhn P (2008) Structural basis of guanine nucleotide exchange mediated by the T-cell essential Vav1. J Mol Biol 380:828–843

    Article  Google Scholar 

  • Clementi C, Jennings PA, Onuchic JN (2000a) How native-state topology affects the folding of dihydrofolate reductase and interleukin-1β. Proc Natl Acad Sci USA 97:5871–5876

    Google Scholar 

  • Clementi C, Nymeyer H, Onuchic JN (2000b) Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298:937–953

    Google Scholar 

  • Cobon GS, Verrills N, Papakostopoulos P, Eastwood H, Linnane AW (2002) The proteomics of aging. Biogerontology 3:133–136

    Article  Google Scholar 

  • Cohen MJ, Karasek FW (1970) Plasma chromatography – a new dimension for gas chromatography and mass spectrometry. J Chromatographic Sci 8:330–337

    Google Scholar 

  • Cohen MJ, Crowe RW (1973) Apparatus and methods for detecting, separating, concentrating and measuring electronegative trace vapors. US Patent 3,742,213

    Google Scholar 

  • Cohen MJ, Carroll DI, Wernlund RF, Kilpatrick WD (1972) Apparatus and methods for separating, concentrating, detecting, and measuring trace gases. US Patent 3,699,333

    Google Scholar 

  • Coimbra MA, Goncalves F, Barros AS, Delgadillo I (2002) Fourier transform infrared spectroscopy and chemometric analysis of white wine polysaccharide extracts. J Agric Food Chem 50:3405–3411

    Article  Google Scholar 

  • Collet J, Vuillaume D (1998) Nano-field effect transistor with an organic self-assembled monolayer as gate insulator. Appl Phys Lett 73:2681–2683

    Article  ADS  Google Scholar 

  • Collet J, Tharaud O, Chapoton A, Vuillaume D (2000) Low voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films. Appl Phys Lett 76:1941–1943

    Article  ADS  Google Scholar 

  • Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (ed) (1996) Current protocols in protein science. Wiley & Sons, New York

    Google Scholar 

  • Cooper DB, Smith VF, Crane JM, Roth HC, Lilly AA, Randall LL (2008) SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J Mol Biol 382:74–87

    Article  Google Scholar 

  • Costantino HR, Griebenow K, Mishra P, Langer R, Klibanov AM (1995) Fourier transform infrared spectroscopic investigation of protein stability in the lyophilized form. Biochim Biophys Acta 1253:69–74

    Google Scholar 

  • Cunningham CN, Krukenberg KA, Agard DA (2008) Intra- and intermonomer interactions are required to synergistically facilitate ATP hydrolysis in Hsp90. J Biol Chem 283:21170–21178

    Article  Google Scholar 

  • Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Reproducible measurement of single-molecule conductivity. Science 294:571–574

    Article  ADS  Google Scholar 

  • Czaplewski C, Rodziewicz-Motowidlo S, Liwo A, Ripoll DR, Wawak RJ, Scheraga HA (2000) Molecular simulation study of cooperativity in hydrophobic association. Protein Sci 9:1235–1245

    Article  Google Scholar 

  • D’Alessio G (1999a) Evolution of oligomeric proteins – the unusual case of a dimeric ribonuclease. Eur J Biochem 266:699–708

    Google Scholar 

  • D’Alessio G (1999b) The evolutionary transition from monomeric to oligomeric proteins: tools, the environment, hypotheses. Progress Biophys Mol Biol 72:271–298

    Google Scholar 

  • Dammer U, Popescu O, Wagner P, Anselmetti D, Güntherodt HJ, Misevic GN (1995) Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267:1173–1175

    Article  ADS  Google Scholar 

  • Dammer U, Hegner M, Anselmetti D, Wagner P, Dreier M, Huber W, Güntherodt HJ (1996) Specific antigen/antibody interactions measured by force microscopy. Biophys J 70:2437–2441

    Article  Google Scholar 

  • Davda J, Labhasetwar V (2002) Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 233:51–59

    Article  Google Scholar 

  • Davies DK (1994) Pulsed ionization ion mobility sensor. US Patent 5,300,773

    Google Scholar 

  • Dawson RMC, Elliott DC, Elliott WH, Jones KM (1969) Data for biochemical research. Oxford University Press, 2nd Ed,

    Google Scholar 

  • de Cock H, Brandenburg K, Wiese A, Holst O, Seydel U (1999) Non-lamellar structure and negative charges of lipopolysaccarides required for efficient folding of outer membrane protein PhoE of Escherichia coli. J Biol Chem 274:5114–5119

    Article  Google Scholar 

  • Demers LM, Ginger DS, Park SJ, Li Z, Chung SW, Mirkin CA (2002) Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296:1836–1838

    Article  ADS  Google Scholar 

  • Dempsey BR, Economou A, Dunn SD, Shilton BH (2002) The ATPase domain of SecA can form a tetramer in solution. J Mol Biol 315:831–843

    Article  Google Scholar 

  • de Paris R, Strunz T, Oroszlan K, Güntherodt HJ, Hegner M (2000) Force spectroscopy and dynamics of the biotin-avidin bond studied by scanning force microscopy. Single Mol 1:285–290

    Article  ADS  Google Scholar 

  • Desmeules P, Grandbois M, Bondarenko VA, Yamazaki A, Salesse C (2002) Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy. Biophys J 82:3343–3350

    Article  Google Scholar 

  • Dierksen K, Typke D, Hegerl R, Koster AJ, Baumeister W (1992) Towards automatic electron tomography. Ultramicroscopy 40:71–87

    Article  Google Scholar 

  • Dill KA, Fiebig KM, Chan HS (1993) Cooperativity in protein folding kinetics. Proc Natl Acad Sci USA 90:1942–1946

    Article  ADS  Google Scholar 

  • Ding FX, Schreiber D, VerBerkmoes NC, Becker JM, Naider F (2002) The chain length dependence of helix formation of the second transmembrane domain of a G protein-coupled receptor of Saccharomyces cerevisiae. J Biol Chem 277:14483–14492

    Article  Google Scholar 

  • Djuricic D, Hill HA, Lo KK, Wong LL (2002) A scanning tunneling microscopy (STM) investigation of complex formation between cytochrome P450cam and putidaredoxin. J Inorg Biochem 88:362–367

    Article  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  ADS  Google Scholar 

  • Dong A, Malecki JM, Lee L, Carpenter JF, Lee JC (2002) Ligand-induced conformational and structural dynamics changes in Escherichia coli cyclic AMP receptor protein. Biochemistry 41:6660–6667

    Article  Google Scholar 

  • Döring HR, Arnold G, Adler J, Röbel T, Riemenschneider J (1999) Photo-ionization ion mobility spectrometry. US Patent 5,968,837

    Google Scholar 

  • Doyle R, Simons K, Qian H, Baker D (1997) Local interactions and the optimization of protein folding. Proteins 29:282–291

    Article  Google Scholar 

  • Drablos F (1999) Clustering of non-polar contacts in proteins. Bioinformatics 15:501–509

    Article  Google Scholar 

  • Duarte IF, Barros A, Delgadillo I, Almeida C, Gil AM (2002) Application of FTIR spectroscopy for the quantification of sugars in mango juice as a function of ripening. J Agric Food Chem 50:3104–3111

    Article  Google Scholar 

  • Dumon C, Varvak A, Wall MA, Flint JE, Lewis RJ, Lakey JH, Morland C, Luginbühl P, Healey S, Todaro T, DeSantis G, Sun M, Parra-Gessert L, Tan X, Weiner DP, Gilbert HJ (2008) Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. J Biol Chem 283:22557–22564

    Article  Google Scholar 

  • Duncan MD, Bashkansky M, Reintjes j (1998) Subsurface defect detection in materials using optical coherence tomography. Optics Express 2:540–545

    Article  ADS  Google Scholar 

  • Durbin SD, Carlson WE (1992) Lysozyme crystal growth studied by atomic force microscopy. J Cryst Growth 122:71–79

    Article  ADS  Google Scholar 

  • Durbin SD, Carson WE, Saros MT (1993) In situ studies of protein crystal growth by atomic force microscopy. J Phys D Appl Phys 26:B128–B132

    Article  ADS  Google Scholar 

  • Dworzanski JP, McClennen WH, Cole PA, Thornton SN, Meuzelaar HLC, Arnold NS, Snyder AP (1997) Field-portable, automated pyrolysis/GC/IMS system for rapid biomarker detection in aerosols: a feasibility study. Field Anal Chem Technol 1:295–305

    Article  Google Scholar 

  • Dzwolak W, Kato M, Taniguchi Y (2002) Fourier transform infrared spectroscopy in high-pressure studies on proteins. Biochim Biophys Acta 1595:131–144

    Google Scholar 

  • Edman P (1950) Method for determination of the amino acid sequence in peptides. Acta Chem Scand 4:283–293

    Article  Google Scholar 

  • Edwards AM, Arrowsmith CH, des Pallieres B (2000) Proteomics: New tools for a new era. Modern Drug Discovery 5:35–44

    Article  Google Scholar 

  • Edwards AM, Kus B, Jansen R, Greenbaum D, Greenblatt J, Gerstein M (2002) Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet 18:529–536

    Article  Google Scholar 

  • Edwards JR, Ruparel H, Ju J (2005) Mass-spectrometry DNA sequencing. Mutat Res 573:3–12

    Google Scholar 

  • Efimov AV (1999) Complementary packing of α-helices in proteins. FEBS Lett 463:3–6

    Article  Google Scholar 

  • Egawa A, Chiba N, Homma K, Chinone K, Muramatsu H (1999) High-speed scanning by dual feedback control in SNOM/AFM. J Microsc 194:325–328

    Article  Google Scholar 

  • Egea PF, Rochel N, Birck C, Vachette P, Timmins PA, Moras D (2001) Effects of ligand binding on the association properties and conformation in solution of retinoic acid receptors RXR and RAR. J Mol Biol 307:557–576

    Article  Google Scholar 

  • Eiceman GA, Karas Z (1994) Ion Mobility Spectrometry. CRC Press, Boca Raton

    Google Scholar 

  • Eiceman GA, Ferris MJ, Anderson GK, Danen WC, Tiee JJ (1988) Laser desorption and ionization of solid polycyclic aromatic hydrocarbons in air with analysis by ion mobility spectrometry. Anal Lett 21:539–552

    Google Scholar 

  • Eiceman GA, Tadjikov B, Krylov E, Nazarov EG, Miller RA, Westbrook J, Funk P (2001) Miniature radio-frequency mobility analyzer as a gas chromatographic detector for oxygen-containing volatile organic compounds, pheromones and other insect attractants. J Chromatogr A 917:205–217

    Article  Google Scholar 

  • Ellis J (1987) Proteins as molecular chaperones. Nature 328:378–379

    Article  ADS  Google Scholar 

  • Ellis RJ (2007) Protein misassembly: macromolecular crowding and molecular chaperones. Adv Exp Med Biol 594:1–13

    Article  Google Scholar 

  • Eve JK, Patel N, Luk SY, Ebbens SJ, Roberts CJ (2002) A study of single drug particle adhesion interactions using atomic force microscopy. Int J Pharm 238:17–27

    Article  Google Scholar 

  • Facci P, Alliata D, Cannistraro S (2001) Potential-induced resonant tunneling through a redox metalloprotein investigated by electrochemical scanning probe microscopy. Ultramicroscopy 89:291–298

    Article  Google Scholar 

  • Fagas G, Cuniberti G, Richter K (2002) Molecular wire-nanotube interfacial effects on electron transport. Ann N Y Acad Sci 960:216–224

    Article  ADS  Google Scholar 

  • Fermi G, Perutz MF, Shaanan B, Fourme R (1984) The crystal structure of human deoxyheamoglobin at 1.74 Å resolution. J Mol Biol 175:159–174

    Article  Google Scholar 

  • Fernandez M, Keyrilainen J, Serimaa R, Torkkeli M, Karjalainen-Lindsberg ML, Tenhunen M, Thomlinson W, Urban V, Suortti P (2002) Small angle X-ray scattering studies of human breast tissue samples. Phys Med Biol 47:577–592

    Article  Google Scholar 

  • Fersht AR (1995a) Characterizing transition states in protein folding – an essential step in the puzzle. Curr Opin Struct Biol 5:79–84

    Google Scholar 

  • Fersht AR (1995b) Optimization of rates of protein folding – the nucleation-condensation mechanism and its implications. Proc Natl Acad Sci USA 92:10869–10873

    Google Scholar 

  • Fersht AR, Matouschek A, Serrano L (1992) The folding of an enzyme. 1. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol 224:771–782

    Article  Google Scholar 

  • Fetler L, Tauc P, Baker DP, Macol CP, Kantrowitz ER, Vachette P (2002) Replacement of Asp-162 by Ala prevents the cooperative transition by the substrates while enhancing the effect of the allosteric activator ATP on E. coli aspartate transcarbamoylase. Protein Sci 11:1074–1081

    Article  Google Scholar 

  • Fetterolf DD, Clark TD (1993) Detection of trace explosive evidence by ion mobility spectrometry. J Forensic Sci 38:28–39

    Google Scholar 

  • Feughelman M, Lyman DJ, Willis BK (2002) The parallel helices of the intermediate filaments of α-keratin. Int J Biol Macromol 30:95–96

    Article  Google Scholar 

  • Figeys D (2002a) Proteomics approaches in drug discovery. Anal Chem 74:412A–419A

    Google Scholar 

  • Figeys D (2002b) Adapting arrays and lab-on-a-chip technology for proteomics. Proteomics 2:373–382

    Google Scholar 

  • Figeys D (2002c) Functional proteomics: mapping protein-protein interactions and pathways. Curr Opin Mol Ther 4:210–215

    Google Scholar 

  • Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Article  ADS  Google Scholar 

  • Florin EL, Pralle A, Horber JK, Stelzer EH (1997) Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J Struct Biol 119:202–211

    Article  Google Scholar 

  • Forge V, Hoshino M, Kuwata K, Arai M, Kuwajima K, Batt CA, Goto Y (2000) Is folding of β-lactoglobulin non-hierarchic? Intermediate with native-like β-sheet and nonnative α-helix. J Mol Biol 296:1039–1051

    Article  Google Scholar 

  • Freeman R, Goodfellow M, Gould FK, Hudson SJ, Lightfoot NF (1990) Pyrolysis mass spectrometry (Py-MS) for the rapid epidemiological typing of clinically significant bacterial pathogens. J Med Microbiol 32:283–286

    Article  Google Scholar 

  • Freeman R, Sisson PR, Barer MR, Ward AC, Lightfoot NF (1997) A highly discriminatory method for the direct comparison of two closely related bacterial populations by pyrolysis mass spectrometry. Zentralbl Bakteriol 285:285–290

    Google Scholar 

  • Frey TG, Mannella CA (2000) The internal structure of mitrochondria. Trends Biochem Sci 25:319–324

    Article  Google Scholar 

  • Fringeli UP, Goette J, Reiter G, Siam M, Baurecht D (1998) Structural investigation of oriented membrane assemblies by FTIR-ATR spectroscopy. AIP Conf Proc 430:729–747

    Article  ADS  Google Scholar 

  • Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Güntherodt HJ, Gerber C, Gimzewski JK (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318

    Article  ADS  Google Scholar 

  • Frolow F, Kalb AJ, Yariv J (1994) Structure of a unique, twofold symmetrical haem-binding site. Nature Struct Biol 1:453–460

    Article  Google Scholar 

  • Fujita K, Yasuda T, Tsutsui T (2003) Flexible organic field-effect transistors fabricated by the electrode-peeling transfer with an assist of self-assembled monolayer. Appl Phys Lett 82:4373–4375

    Article  ADS  Google Scholar 

  • Furuike S, Ito T, Yamazaki M (2001) Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett 498:72–75

    Article  Google Scholar 

  • Gabant G, Augier J, Armengaud J (2008) Assessment of solvent residues accessibility using three Sulfo-NHS-biotin reagents in parallel: application to footprint changes of a methyltransferase upon binding its substrate. J Mass Spectrom 43:360–370

    Article  Google Scholar 

  • Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    Article  ADS  Google Scholar 

  • Gaigneaux A, Ruysschaert JM, Goormaghtigh E (2002) Infrared spectroscopy as a tool for discrimination between sensitive and multiresistant K562 cells. Eur J Biochem 269:1968–1973

    Article  Google Scholar 

  • Gallagher T, Alexander P, Bryan P, Gilliland GL (1994) Two crystal structures of the B1 immunoglobin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 33:4721–4729

    Article  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    Article  Google Scholar 

  • Galzitskaya OV, Surin AK, Nakamura H (2000) Optimal region of average sidechain entropy for fast protein folding. Protein Sci 9:580–586

    Article  Google Scholar 

  • Gao H, Oberringer M, Englisch A, Hanselmann RG, Hartmann U (2001) The scanning near-field optical microscope as a tool for proteomics. Ultramicroscopy 86:145–150

    Article  Google Scholar 

  • Ganim Z, Chung HS, Smith AW, Deflores LP, Jones KC, Tokmakoff A (2008) Amide I two-dimensional infrared spectroscopy of proteins. Acc Chem Res 41:432–441

    Article  Google Scholar 

  • Garcia P, Serrano L, Durand D, Rico M, Bruix M (2001) NMR and SAXS characterization of the denatured state of the chemotactic protein CheY: implications for protein folding initiation. Protein Sci 10:1100–1112

    Article  Google Scholar 

  • Garman E, Owen RL (2007) Cryocrystallography of macromolecules: practice and optimization. Methods Mol Biol 364:1–18

    Google Scholar 

  • Gaub HE, Fernandez JM (1998) The molecular elasticity of individual proteins studied by AFM-related techniques. AvH Magazin 71:11–18

    Google Scholar 

  • Genick UK, Borgstahl GEO, Ng K, Ren Z, Pradervand C, Burke PM, Srajer V, Teng TY, Schildkamp W, McRee DE, Moffat K, Getzoff ED (1997) Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275:1471–1475

    Article  Google Scholar 

  • Gera JF, Hazbun TR, Fields S (2002) Array-based methods for identifying protein-protein and protein-nucleic acid interactions. Methods Enzymol 350:499–512

    Article  Google Scholar 

  • Ghirlanda G, Lear JD, Ogihara NL, Eisenberg D, DeGrado WF (2002) A hierarchic approach to the design of hexameric helical barrels. J Mol Biol 319:243–253

    Article  Google Scholar 

  • Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the Silicon(111)-(7×7) surface observed by atomic force microscopy. Science 289:422–426

    Article  ADS  Google Scholar 

  • Gilardi G, Fantuzzi A, Sadeghi SJ (2001) Engineering and design in the bioelectrochemistry of metalloproteins. Curr Opin Struct Biol 11:491–499

    Article  Google Scholar 

  • Gilbert NC, Niebuhr M, Tsuruta H, Bordelon T, Ridderbusch O, Dassey A, Brash AR, Bartlett SG, Newcomer ME (2008) Biochemistry 47:10665–10676

    Article  Google Scholar 

  • Gilliland G L, Tung M, Ladner JE (2002) The Biological Macromolecule Crystallization Database: crystallization procedures and strategies. Acta Cryst D58:916–920

    Article  Google Scholar 

  • Gobom J, Mirgorodskaya E, Nordhoff E, Hojrup P, Roepstorff P (1999) Use of vapor-phase acid hydrolysis for mass spectrometric peptide mapping and protein identification. Anal Chem 71:919–927

    Article  Google Scholar 

  • Goebel J, Breit U (2000) Ion mobility spectrometer. US Patent 6,049,076

    Google Scholar 

  • Goldsbury C, Aebi U, Frey P (2001) Visualizing the growth of Alzheimer’s A β-amyloidlike fibrils. Trends Mol Med 7:582

    Article  Google Scholar 

  • Goodacre R (1994) Characterisation and quantification of microbial systems using pyrolysis mass spectrometry: introducing neural networks to analytical pyrolysis. Microbiology Europe 2:16–22

    Google Scholar 

  • Goodacre R, Kell DB (1996) Pyrolysis mass spectrometry and its applications in biotechnology. Curr Opin Biotechnol 7:20–28

    Article  Google Scholar 

  • Goodacre R, Howell SA, Noble WC, Neal MJ (1996) Sub-species discrimination, using pyrolysis mass spectrometry and self-organising neural networks, of Propionibacterium acnes isolated from normal human skin. Zentralbl Bakteriol 284:501–515

    Google Scholar 

  • Goodacre R, Rooney PJ, Kell DB (1998a) Discrimination between methicillin-resistant and methicillin-susceptible Staphylococcus aureus using pyrolysis mass spectrometry and artificial neural networks. J Antimicrob Chemother 41:27–34

    Google Scholar 

  • Goodacre R, Timmins EM, Burton R, Kaderbhai N, Woodward AM, Kell DB, Rooney PJ (1998b) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144:1157–1170

    Google Scholar 

  • Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB, Logan NA (2000) Detection of the dipicolinic acid biomarker in Bacillus spores using Curie point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem 72:119–127

    Article  Google Scholar 

  • Goodfellow M, Freeman R, Sisson PR (1997) Curie point pyrolysis mass spectrometry as a tool in clinical microbiology. Zentralbl Bakteriol 285:133–156

    Google Scholar 

  • Gordon L, Mobley PW, Pilpa R, Sherman MA, Waring AJ (2002) Conformational mapping of the N-terminal peptide of HIV-1 gp41 in membrane environments using 13C-enhanced Fourier transform infrared spectroscopy. Biochim Biophys Acta 1559:96–120

    Article  Google Scholar 

  • Goto Y, Aimoto S (1991) Anion and pH-dependent conformational transition of an amphiphilic polypeptide. J Mol Biol 218:387–396

    Article  Google Scholar 

  • Goto Y, Hoshino M, Kuwata K, Batt CA (1999) Folding of β-lactoglobulin, a case of the inconsistency of local and non-local interactions. In: Kuwajima K and Arai M (ed) Old and New Views of Protein Folding. Elsevier, Amsterdam, 3–11

    Google Scholar 

  • Govindarajan S, Goldstein RA (1995) Optimal local propensities for model proteins. Proteins 22:413–418

    Article  Google Scholar 

  • Grabner B, Landis WJ, Roschger P, Rinnerthaler S, Peterlik H, Klaushofer K, Fratzl P (2001) Age- and genotype-dependence of bone material properties in the osteogenesis imperfecta murine model (oim). Bone 29:453–457

    Article  Google Scholar 

  • Grandori R, Matecko I, Müller N (2002) Uncoupled analysis of secondary and tertiary protein structure by circular dichroism and electrospray ionization mass spectrometry. J Mass Spectrom 37:191–196

    Article  Google Scholar 

  • Grantcharova VP, Riddle DS, Baker D (2000) Long-range order in the src SH3 folding transition state. Proc Natl Acad Sci USA 97:7084–7089

    Article  ADS  Google Scholar 

  • Grayhack EJ, Phizicky EM (2001) Genomic analysis of biochemical function. Curr Opin Chem Biol 5:34–39

    Article  Google Scholar 

  • Griffin TJ, Goodlett DR, Aebersold R (2001) Advances in proteome analysis by mass spectrometry. Curr Opin Biotechnol 12:607–612

    Article  Google Scholar 

  • Grigoriev IV, Mironov AA, Rakhmaninova AB (1999) Refinement of helix boundaries in α-helical globular proteins (in Russian). Mol Biol (Moscow) 33:206–214

    Google Scholar 

  • Gromiha MM, Selvaraj S (1997) Influence of medium and long range interactions in different structural classes of globular proteins. J Biol Phys 23:151–162

    Article  Google Scholar 

  • Gromiha MM, Selvaraj S (1999) Importance of long-range interactions in protein folding. Biophys Chem 77:49–68

    Article  Google Scholar 

  • Gross M (1996) Linguistic analysis of protein folding. FEBS Lett 390:249–252

    Article  Google Scholar 

  • Gruebele M (1999) The fast protein-folding problem. Annu Rev Phys Chem 50:485–516

    Article  ADS  Google Scholar 

  • Gunning AP, Wilde PJ, Clark DC, Morris VJ, Parker ML, Gunning PA (1996) Atomic force microscopy of interfacial protein films. J Colloid Interface Sci 183:600–602

    Article  Google Scholar 

  • Gutsche I, Holzinger J, Rößle M, Heumann H, Baumeister W, May RP (2000a) Conformational rearrangements of an archaeal chaperonin upon ATPase cycling. Curr Biol 10:405–408

    Google Scholar 

  • Gutsche I, Mihalache O, Hegerl R, Typke D, Baumeister W (2000b) ATPase cycle controls the conformation of an archaeal chaperonin as visualized by cryo-electron microscopy. FEBS Lett 477:278–282

    Google Scholar 

  • Haas J, Lehr CM (2002) Developments in the area of bioadhesive drug delivery systems. Expert. Opin Biol Ther 2:287–298

    Article  Google Scholar 

  • Haider M, Uhlemann S, Schwan E, Rose H, Kabius B, Urban K (1998) Electron microscopy image enhanced. Nature 392:768–769

    Article  ADS  Google Scholar 

  • Hamada D, Kuroda Y, Tanaka T, Goto Y (1995) High helical propensity of the peptide fragments derived from β-lactoglobulin, a predominantly β-sheet protein. J Mol Biol 254:737–746

    Article  Google Scholar 

  • Homouz D, Perham M, Samiotakis A, Cheung MS, Wittung-Stafshede P (2008) Crowded, cell-like environment induces shape changes in aspherical protein. Proc Natl Acad Sci USA 105:11754–11759

    Article  ADS  Google Scholar 

  • Hansma PK, Drake B, Marti O, Gould SAC, Prater CB (1989) The scanning ion-conductance microscope. Science Reports 243:641–643

    ADS  Google Scholar 

  • Häusler G, Lindner MW (1998) “Coherence radar” and “Spectral radar”– New tools for dermatological diagnosis. J Biomed Opt 3:21–31

    Article  Google Scholar 

  • Heimel J, Fischer UC, Fuchs H (2001) SNOM/STM using a tetrahedral tip and a sensitive current-to-voltage converter. J Microsc 202:53–59

    Article  MathSciNet  Google Scholar 

  • Heinemann U, Illing G, Oschkinat H (2001) High-throughput three-dimensional protein structure determination. Curr Opin Biotechnol 12:348–354

    Article  Google Scholar 

  • Helyer RJ, Kelley T, Berkeley RC (1997) Pyrolysis mass spectrometry studies on Bacillus anthracis, Bacillus cereus and their close relatives. Zentralbl Bakteriol 285:319–328

    Google Scholar 

  • Henderson R (1996) Lecture “Resolution limits of microscopes”, Laboratory of Molecular Biology, Cambridge

    Google Scholar 

  • Henderson E, Haydon PG, Sakaguchi DS (1992) Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257:1944–1946

    Article  ADS  Google Scholar 

  • Hertadi R, Ikai A (2002) Unfolding mechanics of holo- and apocalmodulin studied by the atomic force microscope. Protein Sci 11:1532–1538

    Article  Google Scholar 

  • Heyes CD, Wang J, Sanii LS, El-Sayed MA (2002) Fourier transform infrared study of the effect of different cations on bacteriorhodopsin protein thermal stability. Biophys J 82:1598–1606

    Article  Google Scholar 

  • Hilario J, Kubelka J, Syud FA, Gellman SH, Keiderling TA (2002) Spectroscopic characterization of selected β-sheet hairpin models. Biopolymers 67:233–236

    Article  Google Scholar 

  • Hildebrand G, Kunze S, Driver M (2001) Blood cell adhesion on sensor materials studied by light, scanning electron, and atomic-force microscopy. Ann Biomed Eng 29:1100–1105

    Article  Google Scholar 

  • Hill HH, Siems WF, St Louis RW, McMinn DG (1990) Ion mobility spectrometry. Anal Chem 62:1201–1209

    Article  Google Scholar 

  • Hills RD Jr, Brooks CL 3rd (2008) Coevolution of function and the folding landscape: correlation with density of native contacts. Biophys J 95:L57–L59

    Article  Google Scholar 

  • Hodneland CD, Lee YS, Min DH, Mrksich M (2002) Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc Natl Acad Sci USA 99:5048–5052

    Article  ADS  Google Scholar 

  • Honda S, Kobayashi N, Munekata E (2000) Thermodynamics of a β-hairpin structure: evidence for cooperative formation of folding nucleus. J Mol Biol 295:269–278

    Article  Google Scholar 

  • Hoover DM, Ludwig ML (1997) A flavodoxin that is required for enzyme activation: the structure of oxidized flavodoxin from Escherichia coli at 1.8 Å resolution. Protein Sci 6:2525–2537

    Article  Google Scholar 

  • Horiuchi Y, Yagi K, Hosokawa T, Yamamoto N, Muramatsu H, Fujihira M (1999) Imaging of various surface properties of fluorescently labelled phospholipid Langmuir-Blodgett films with a combined scanning probe microscope. J Microsc 194:467–471

    Article  Google Scholar 

  • Hornemann S, Glockshuber R (1998) A scrapie-like unfolding intermediate of the prion protein domain PrP(121–231) induced by acidic pH. Proc Natl Acad Sci USA 95:6010–6014

    Article  ADS  Google Scholar 

  • Howald L, Lüthl R, Meyer E, Güntherodt HJ (1995) Atomic-force microscopy on the Si(111)-(7×7) surface. Phys Rev B Condens Matter 51:5484–5487

    ADS  Google Scholar 

  • Huang CY, Getahun Z, Zhu Y, Klemke JW, DeGrado WF, Gai F (2002) Helix formation via conformation diffusion search. Proc Natl Acad Sci USA 99:2788–2793

    Article  ADS  Google Scholar 

  • Hubbard MJ (2002) Functional proteomics: The goalposts are moving. Proteomics 2:1069–1078

    Article  Google Scholar 

  • Hung K, Sun X, Ding H, Kalafatis M, Simioni P, Guo B (2002) A matrix-assisted laser desorption/ionization time-of-flight based method for screening the 1691 G ← A mutation in the factor V gene. Blood Coagul Fibrinolysis 13:117–122

    Article  Google Scholar 

  • Igartua M, Saulnier P, Heurtault B, Pech B, Proust JE, Pedraz JL, Benoit JP (2002) Development and characterization of solid lipid nanoparticles loaded with magnetite. Int J Pharm 233:149–157

    Article  Google Scholar 

  • Ihalainen JA, Paoli B, Muff S, Backus EH, Bredenbeck J, Woolley GA, Caflisch A, Hamm P (2008) α-Helix folding in the presence of structural constraints. Proc Natl Acad Sci USA 105:9588–9593

    Article  ADS  Google Scholar 

  • Ikarashi Y, Itoh K, Maruyama Y (1991) Application of FRIT fast atom bombardment liquid chromatography / mass spectrometry for the determination of acetylcholine levels in rat brain regions. Biol Mass Spectrom. 20:21–25

    Article  Google Scholar 

  • Ikeda S, Morris VJ (2002) Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy. Biomacromolecules 3:382–389

    Article  Google Scholar 

  • Irbäck A, Peterson C, Potthast F, Sandelin E (1999) Design of sequences with good folding properties in coarse-grained protein models. Structure Fold Des 7:347–360

    Article  Google Scholar 

  • Ironside JW (1998) Prion diseases in man. J Pathol 186:227–234

    Article  Google Scholar 

  • Ishizawa F, Misawa S (1990) Capillary column pyrolysis - gas chromatography of hair: a short study in personal identification. J Forensic Sci Soc 30:201–209

    Article  Google Scholar 

  • Ito Y, Bleloch AL, Brown LM (1998) Nanofabrication of solid-state Fresnel lenses for electron optics. Nature 394:49–52

    Article  ADS  Google Scholar 

  • Ito T, Ota K, Kubota H, Yamaguchi Y, Chiba T, Sakuraba K, Yoshida M (2002) Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol Cell Proteomics 1:561–566

    Article  Google Scholar 

  • Itzhaki LS, Otzen DE, Fersht AR (1995) The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J Mol Biol 254:260–288

    Article  Google Scholar 

  • Iverson TM, Luna-Chavez C, Cecchini G, Rees DC (1999) Structure of the E. coli fumarate reductase respiratory complex. Science 284:1961–1966

    Article  Google Scholar 

  • Jackson SE (1998) How do small single-domain proteins fold? Fold Des 3:R81–R91

    Article  Google Scholar 

  • Jäger D, Jungblut PR, Müller-Werdan U (2002) Separation and identification of human heart proteins. J Chromatogr B Analyt Technol Biomed Life Sci 771:131–153

    Article  Google Scholar 

  • Jain KK (2002) Recent advances in oncoproteomics. Curr Opin Mol Ther 4:203–209

    Google Scholar 

  • Jeney S, Florin EL, Horber JK (2001) Use of photonic force microscopy to study single-motor-molecule mechanics. Methods Mol Biol 164:91–108

    Google Scholar 

  • Jésior JC, Filhol A, Tranqui D (1994) FoldIt (light) – an interactive program for Macintosh computers to analyze and display Protein Data Bank coordinate files. J Appl Cryst 27:1075

    Article  Google Scholar 

  • Jésior JC (2000) Hydrophilic frameworks in proteins? J Protein Chem 19:93–103

    Article  Google Scholar 

  • Jewett AI, Pande VS, Plaxco KW (2003). Cooperativity, smooth energy landscapes and the origins of topology-dependent protein folding rates. J Mol Biol 326:247–253

    Article  Google Scholar 

  • Jiang W, Baker ML, Jakana J, Weigele PR, King J, Chiu W (2008) Backbone structure of the infectious ε15 virus capsid revealed by electron cryomicroscopy. Nature 451:1130–1134

    Article  ADS  Google Scholar 

  • Jiang M, Nölting B, Stayton PS, Sligar SG (1996) Surface-linked molecular monolayers of an engineered myoglobin: structure, stability, and function. Langmuier 12:1278–1283

    Article  Google Scholar 

  • Jiao Y, Cherny DI, Heim G, Jovin TM, Schaffer TE (2001) Dynamic interactions of p53 with DNA in solution by time-lapse atomic force microscopy. J Mol Biol 314:233–243

    Article  Google Scholar 

  • Jimenez CR, Eyman M, Lavina ZS, Gioio A, Li KW, van der Schors RC, Geraerts WP, Giuditta A, Kaplan BB, van Minnen J (2002) Protein synthesis in synaptosomes: a proteomics analysis. J Neurochem 81:735–744

    Article  Google Scholar 

  • Kaji N, Ueda M, Baba Y (2001) Direct measurement of conformational changes on DNA molecule intercalating with a fluorescence dye in an electrophoretic buffer solution by means of atomic force microscopy. Electrophoresis 22:3357–3364

    Article  Google Scholar 

  • Kamatari YO, Ohji S, Konno T, Seki Y, Soda K, Kataoka M, Akasaka K (1999) The compact and expanded denatured conformations of apomyoglobin in the methanol-water solvent. Protein Sci 8:873–882

    Article  Google Scholar 

  • Kandori H, Shimono K, Shichida Y, Kamo N (2002) Interaction of Asn105 with the retinal chromophore during photoisomerization of pharaonis phoborhodopsin. Biochemistry 41:4554–4559

    Article  Google Scholar 

  • Karasek FW (1970) Plasma chromatograph. Research/Development 21:34–37

    Google Scholar 

  • Karl M (1994) Ion mobility spectrometer drift chamber. US Patent 5,280,175

    Google Scholar 

  • Karplus M, Weaver DL (1994) Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci 3:650–668

    Article  Google Scholar 

  • Katakuse I, Matsuo T, Matsuda H, Shimonishi Y, Hong YM, Izumi Y (1982) Sequence determination of a peptide with 55 amino acid residues by Edman degradation and field desorption mass spectrometry. Biomed Mass Spectrom 9:64–68

    Article  Google Scholar 

  • Katou H, Hoshino M, Kamikubo H, Batt CA, Goto Y (2001) Native-like β-hairpin retained in the cold-denatured state of bovine β-lactoglobulin. J Mol Biol 310:471–484

    Article  Google Scholar 

  • Kawata Y, Kawagoe M, Hongo K, Mikuya T, Higurashi T, Mizobata T, Nagai J (1999) Functional communications between the apical and equatorial domains of GroEL through the intermediate domain. Biochemistry 38:15731–15740

    Article  Google Scholar 

  • Keller RA (1975) Plasma chromatograph, an atmospheric pressure chemical ionization drift-time spectrometer. Am Lab 7:35–44

    Google Scholar 

  • Keller T, Miki P, Regenscheit P, Dirnhofer R, Schneider A, Tsuchihashi H (1998) Detection of designer drugs in human hair by ion mobility spectrometry. Forensic Sci Int 94:55–63

    Article  Google Scholar 

  • Kellermayer MS, Smith SB, Bustamante C, Granzier HL (2001) Mechanical fatigue in repetitively stretched single molecules of titin. Biophys J 80:852–863

    Article  Google Scholar 

  • Kendrew JC, Dickerson RE, Strandberg BE, Hart RJ, Davies DR, Phillips DC, Shore VC (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å resolution. Nature 185:422–427

    Article  ADS  Google Scholar 

  • Kenyon RG, Ferguson EV, Ward AC (1997) Application of neural networks to the analysis of pyrolysis mass spectra. Zentralbl Bakteriol 285:267–277

    Google Scholar 

  • Kersten B, Burkle L, Kuhn EJ, Giavalisco P, Konthur Z, Lueking A, Walter G, Eickhoff H, Schneider U (2002) Large-scale plant proteomics. Plant Mol Biol 48:133–141

    Article  Google Scholar 

  • Kharakoz DP (1989) Volumetric properties of proteins and their analogs in diluted water solutions. 1. Partial volumes of amino acids at 15–55 °C. Biophys Chem 34:115–125

    Article  Google Scholar 

  • Kharakoz DP (1991) Volumetric properties of proteins and their analogs in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J Phys Chem 95:5634–5642

    Article  Google Scholar 

  • Kharakoz DP (1997) Partial volumes and compressibilities of extended polypeptide chains in aqueous solution: additivity scheme and implication of protein unfolding at normal and high pressure. Biochemistry 36:10276–10285

    Article  Google Scholar 

  • Khomutov GB, Belovolova LV, Gubin SP, Khanin VV, Obydenov AY, Sergeev-Cherenkov AN, Soldatov ES, Trifonov AS (2002) STM study of morphology and electron transport features in cytochrome c and nanocluster molecule monolayers. Bioelectrochemistry 55:177–181

    Article  Google Scholar 

  • Kim Y, Prestegard JH (1990) Refinement of the NMR structures for acyl carrier protein with scalar coupling data. Proteins 8:377–385

    Article  Google Scholar 

  • Kim JM, Ohtani T, Sugiyama S, Hirose T, Muramatsu H (2001) Simultaneous topographic and fluorescence imaging of single DNA molecules for DNA analysis with a scanning near-field optical/atomic force microscope. Anal Chem 73:5984–5991

    Article  Google Scholar 

  • Kimura T, Maeda A, Nishiguchi S, Ishimori K, Morishima I, Konno T, Goto Y, Takahashi S (2008) Dehydration of main-chain amides in the final folding step of single-chain monellin revealed by time-resolved infrared spectroscopy. Proc Natl Acad Sci USA 105:13391–13396

    Article  ADS  Google Scholar 

  • Kinney JH, Pople JA, Marshall GW, Marshall SJ (2001) Collagen orientation and crystallite size in human dentin: a small angle X-ray scattering study. Calcif Tissue Int 69:31–37

    Article  Google Scholar 

  • Kintz P, Cirimele V, Sengler C, Mangin P (1995) Testing human hair and urine for anhydroecgonine methyl ester, a pyrolysis product of cocaine. J Anal Toxicol 19:479–482

    Google Scholar 

  • Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem 50:3912–3918

    Article  Google Scholar 

  • Klade CS (2002) Proteomics approaches towards antigen discovery and vaccine development. Curr Opin Mol Ther 4:216–223

    Google Scholar 

  • Kline AD, Braun W, Wüthrich K (1988) Determination of the complete three-dimensional structure of the α-amylase inhibitor tendamistat in aqueous solution by nuclear magnetic resonance and distance geometry. J Mol Biol 204:675–724

    Article  Google Scholar 

  • Kneipp J, Beekes M, Lasch P, Naumann D (2002) Molecular changes of preclinical scrapie can be detected by infrared spectroscopy. J Neurosci 22:2989–2997

    Google Scholar 

  • Koga N, Takada S (2001) Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model. J Mol Biol 313:171–180

    Article  Google Scholar 

  • Kohno M, Enatsu M, Yoshiizumi M, Kugimiya W (1999) High-level expression of Rhizopus niveus lipase in the yeast Saccharomyces cerevisiae and structural properties of the expressed enzyme. Protein Expr Purif 15:327–335

    Article  Google Scholar 

  • Kojima M, Tanokura M, Maeda M, Kimura K, Amemiya Y, Kihara H, Takahashi K (2000) pH-dependent unfolding of aspergillopepsin II studied by small angle X-ray scattering. Biochemistry 39:1364–1372

    Article  Google Scholar 

  • Kollman JM, Zelter A, Muller EG, Fox B, Rice LM, Davis TN, Agard DA (2008) The structure of the γ-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Mol Biol Cell 19:207–215

    Article  Google Scholar 

  • Konan YN, Gurny R, Allemann E (2002) Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm 233:239–252

    Article  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55

    Article  Google Scholar 

  • Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys J 73:653–658

    Article  Google Scholar 

  • Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CR (2000a) Cell volume measurement using scanning ion conductance microscopy. Biophys J 78:451–457

    Google Scholar 

  • Korchev YE, Raval M, Lab MJ, Gorelik J, Edwards CR, Rayment T, Klenerman D (2000b) Hybrid scanning ion conductance and scanning near-field optical microscopy for the study of living cells. Biophys J 78:2675–2679

    Google Scholar 

  • Kotiaho T, Lauritsen FR, Degn H, Paakkanen H (1995) Membrane inlet ion mobility spectrometer for on-line measurement of ethanol in beer and in yeast fermentation. Anal Chim Acta 309:317–325

    Article  Google Scholar 

  • Kramer G, Kudlicki W, McCarthy D, Tsalkova T, Simmons D, Hardesty B (1999) N-terminal and C-terminal modifications affect folding, release from the ribosomes and stability of in vitro synthesed proteins. Int J Biochem Cell Biol 31:231–241

    Article  Google Scholar 

  • Kraulis PJ (1991) MOLSRCIPT – a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  • Krautbauer R, Pope LH, Schrader TE, Allen S, Gaub H (2002) Discriminating small molecule DNA binding modes by single molecule force spectroscopy. FEBS Lett 510:154–158

    Article  Google Scholar 

  • Kukar T, Eckenrode S, Gu Y, Lian W, Megginson M, She JX, Wu D (2002) Protein microarrays to detect protein-protein interactions using red and green fluorescent proteins. Anal Biochem 306:50–54

    Article  Google Scholar 

  • Kuwajima K, Yamaya H, Sugai S (1996) The burst-phase intermediate in the refolding of β-lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy. J Mol Biol 264:806–822

    Article  Google Scholar 

  • Kuznetsov YG, Malkin AJ, Lucas RW, McPherson A (2000) Atomic force microscopy studies of icosahedral virus crystal growth. Colloids Surf B Biointerfaces 19:333–346

    Article  Google Scholar 

  • Lasch P, Pacifico A, Diem M (2002) Spatially resolved IR microspectroscopy of single cells. Biopolymers 67:335–338

    Article  Google Scholar 

  • Laurell T, Marko-Varga G (2002) Miniaturisation is mandatory unravelling the human proteome. Proteomics 2:345–351

    Article  Google Scholar 

  • Lawrence AH, Barbour RJ, Sutcliffe R (1991) Identification of wood species by ion mobility spectrometry. Anal Chem 63:1217–1221

    Article  Google Scholar 

  • Leahy DJ, Hendrickson WA, Aukhil I, Erickson HP (1992) Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258:987–991

    Article  ADS  Google Scholar 

  • Leasure CS, Fleischer ME, Anderson GK, Eiceman GA (1986) Photoionization in air with ion mobility spectrometry using a hydrogen discharge lamp. Anal Chem 58:2142–2147

    Article  Google Scholar 

  • Leaves NI, Sisson PR, Freeman R, Jordens JZ (1997) Pyrolysis mass spectrometry in epidemiological and population genetic studies of Haemophilus influenzae. J Med Microbiol 46:204–207

    Article  Google Scholar 

  • Lee DS, Wu C, Hill HH (1998) Detection of carbohydrates by electrospray ionization / ion mobility spectrometry following microbore high-performance liquid chromatography. J Chromatogr 822:1–9

    Article  Google Scholar 

  • Lee KA, Craven KB, Niemi GA, Hurley JB (2002a) Mass spectrometric analysis of the kinetics of in vivo rhodopsin phosphorylation. Protein Sci 11:862–874

    Google Scholar 

  • Lee KB, Park SJ, Mirkin CA, Smith JC, Mrksich M (2002b) Protein nanoarrays generated by dip-pen nanolithography. Science 295:1702–1705

    Google Scholar 

  • Lee SW, Mao CB, Flynn CE, Belcher AM (2002c) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895

    Google Scholar 

  • Leonhardt JW (1996) New detectors in environmental monitoring using tritium sources. J Radioanlyt Nucl Chem 206:333–339

    Article  Google Scholar 

  • Leonhardt JW, Rohrbeck W, Bensch H (2001) A high resolution IMS for environmental studies. Supplement to the catalogue for the IMS supplied by the IUT Institute for Environmental Technologies Ltd, Berlin

    Google Scholar 

  • Lim SO, Park SJ, Kim W, Park SG, Kim HJ, Kim YI, Sohn TS, Noh JH, Jung G (2002) Proteome analysis of hepatocellular carcinoma. Biochem Biophys Res Commun 291:1031–1037

    Article  Google Scholar 

  • Lin H, Cornish VW (2002) Screening and selection methods for large-scale analysis of protein function. Angew Chem Int Ed Engl 2002 41:4402–4425

    Article  Google Scholar 

  • Linderoth NA, Simon MN, Russel M (1997) The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science 278:1635–1638

    Article  ADS  Google Scholar 

  • Lindqvist M, Graslund A (2001) An FTIR and CD study of the structural effects of G-tract length and sequence context on DNA conformation in solution. J Mol Biol 314:423–432

    Article  Google Scholar 

  • Lindsay SM, Thundat T, Nagahara L, Knipping U, Rill RL (1989) Images of DNA double helix in water. Science 244:1063–1064

    Article  ADS  Google Scholar 

  • Liphardt J, Onoa B, Smith SB, Tinoco I Jr, Bustamante C (2001) Reversible unfolding of single RNA molecules by mechanical force. Science 292:733–737

    Article  ADS  Google Scholar 

  • Liu M, Barth A (2002) Mapping nucleotide binding site of calcium ATPase with IR spectroscopy: effects of ATP γ-phosphate binding. Biopolymers 67:267–270

    Article  Google Scholar 

  • Lubman DM, Kronick MN (1982) Plasma chromatography with laser-produced ions. Anal Chem 54:1546–1551

    Article  Google Scholar 

  • Lubman DM, Kronick MN (1983) Multiwavelength-selective ionization of organic compounds in an ion mobility spectrometer. Anal Chem 55:867–873

    Article  Google Scholar 

  • MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32 Suppl 2:526–532

    Article  Google Scholar 

  • Magee JG, Goodfellow M, Sisson PR, Freeman R, Lightfoot NF (1997) Differentiation of Mycobacterium senegalense from related non-chromogenic mycobacteria using pyrolysis mass spectrometry. Zentralbl Bakteriol 285:278–284

    Google Scholar 

  • Malins DC, Hellstrom KE, Anderson KM, Johnson PM, Vinson MA (2002) Antioxidant-induced changes in oxidized DNA. Proc Natl Acad Sci USA 99:5937–5941

    Article  ADS  Google Scholar 

  • Malkin AJ, Land TA, Kuznetsov YG, McPherson A, DeYoreo JJ (1995) Investigation of virus crystal growth mechanisms by in situ atomic force microscopy. Phys Rev Lett 75:2778–2781

    Article  ADS  Google Scholar 

  • Malkin AJ, Plomp M, McPherson A (2002) Application of atomic force microscopy to studies of surface processes in virus crystallization and structural biology. Acta Crystallogr D Biol Crystallogr 58:1617–1621

    Article  Google Scholar 

  • Man WJ, White IR, Bryant D, Bugelski P, Camilleri P, Cutler P, Heald G, Lord PG, Wood J, Kramer K (2002) Protein expression analysis of drug-mediated hepatotoxicity in the Sprague-Dawley rat. Proteomics 2:1577–1585

    Article  Google Scholar 

  • Maret W, Heffron G, Hill HA, Djuricic D, Jiang LJ, Vallee BL (2002) The ATP/metallothionein interaction: NMR and STM. Biochemistry 41:1689–1694

    Article  Google Scholar 

  • Marple VA, Chein CM (1980) Virtual impactors: a theoretical study. Environmental Sci Technol 14:976–985

    Article  Google Scholar 

  • Marple VA, Olson BA, Miller NC (1998) The role of inertial particle collectors in evaluating pharmaceutical aerosol delivery systems. J Aerosol Med 11 Suppl 1:S139–S153

    Google Scholar 

  • Martin SJ, Butler MA, Frye GC, Schubert WK (1998) Ion mobility spectrometer using frequency-domain separation. US Patent 5,789,745

    Google Scholar 

  • Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S, Grayhack EJ, Phizicky EM (1999) A biochemical genomics approach for identifying genes by the activity of their products. Science 286:1153–1155

    Article  Google Scholar 

  • Maruyama T, Nakajima M, Ichikawa S, Sano Y, Nabetani H, Furusaki S, Seki M (2001) Small angle X-ray scattering analysis of stearic acid modified lipase. Biosci Biotechnol Biochem 65:1003–1006

    Article  Google Scholar 

  • Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34:1545–1553

    Article  Google Scholar 

  • Matsko N, Klinov D, Manykin A, Demin V, Klimenko S (2001) Atomic force microscopy analysis of bacteriophages ΦKZ and T4. J Electron Microsc (Tokyo) 50:417–422

    Article  Google Scholar 

  • Matsuda H (1976) Double focusing mass spectrometers of second order. Atomic Masses and Fundamental Constants 5:185–191

    Google Scholar 

  • Matsuda H (1981) Mass spectrometers of high transmission and high resolving power. Nucl Instr Meth 187:127–136

    Article  Google Scholar 

  • Matsuda H, Naito M, Takeuchi M (1974) Advanced virtual image double focussing mass spectrometer. Adv Mass Spectrom 6:407–412

    Google Scholar 

  • Matz G, Schröder W (1996) Fast GC/MS field screening for excavation and bioredmediation of contaminated soil. Field Anal Chem Technol 1:77–85

    Article  Google Scholar 

  • Matz G, Schröder W (1997) Fast detection of wood preservatives on waste wood with GC/MS, GC/ECD and ion mobility spectrometry. Conference “Field analytical methods for hazardous wastes and toxic chemicals”, Las Vegas

    Google Scholar 

  • Matz LM, Hill HH (2001) Evaluation of opiate separation by high-resolution electrospray ionization-ion mobility spectrometry / mass spectrometry. Anal Chem 73:1664–1669

    Article  Google Scholar 

  • Mayor U, Johnson CM, Daggett V, Fersht AR (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc Natl Acad Sci USA 97:13518–13522

    Article  ADS  Google Scholar 

  • McCraith S, Holtzman T, Moss B, Fields S (2000) Genome-wide analysis of vaccinia virus protein-protein interactions. Proc Natl Acad Sci USA 97:4879–4884

    Article  ADS  Google Scholar 

  • McPherson A, Malkin AJ, Kuznetsov YG (2000) Atomic force microscopy in the study of macromolecular crystal growth. Annu Rev Biophys Biomol Struct 29:361–410

    Article  Google Scholar 

  • McPherson A, Malkin AJ, Kuznetsov YG, Plomp M (2001) Atomic force microscopy applications in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 57:1053–1060

    Article  Google Scholar 

  • Megerle CA, Cohn DB (2000) Ion mobility sensors and spectrometers having a corona discharge ionization source. US Patent 6,100,698

    Google Scholar 

  • Meixner AJ, Kneppe H (1998) Scanning near-field optical microscopy in cell biology and microbiology. Cell Mol Biol 44:673–688

    Google Scholar 

  • Menéndez M, Garrido-Delgado R, Arce L, Valcárcel M (2008) Direct determination of volatile analytes from solid samples by UV-ion mobility spectrometry. J Chromatogr A, in press

    Google Scholar 

  • Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53

    Article  ADS  Google Scholar 

  • Mezzetti A, Nabedryk E, Breton J, Okamura MY, Paddock ML, Giacometti G, Leibl W (2002) Rapid-scan Fourier transform infrared spectroscopy shows coupling of Glu-L212 protonation and electron transfer to Q(B) in Rhodobacter sphaeroides reaction centers. Biochim Biophys Acta 1553:320–330

    Article  Google Scholar 

  • Miki A, Keller T, Regenscheit P, Dirnhofer R, Tatsuno M, Katagi M, Nishikawa M, Tsuchihashi H (1997) Application of ion mobility spectrometry to the rapid screening of methamphetamine incorporated in hair. J Chromatogr B 692:319–328

    Article  Google Scholar 

  • Miki A, Tatsuno M, Katagie M, Nishikawa M, Tsuchihashi H (1998) Analysis of illicit drugs by ion mobility spectrometry. J Toxicol - Toxin Rev 17:93–93

    Google Scholar 

  • Miller LD, Putthanarat S, Eby RK, Adams WW (1999) Investigation of the nanofibrillar morphology in silk fibers by small angle X-ray scattering and atomic force microscopy. Int J Biol Macromol 24:159–165

    Article  Google Scholar 

  • Mills G, Zhou H, Midha A, Donaldson L, Weaver JMR (1998) Scanning thermal microscopy using batch fabricated thermocouple probes. Appl Phys Lett 72:2900–2902

    Article  ADS  Google Scholar 

  • Mills G, Weaver JMR, Harris G, Chen W, Carrejo J, Johnson L, Rogers B (1999) Detection of subsurface voids using scanning thermal microscopy. Ultramicroscopy 80:7–11

    Article  Google Scholar 

  • Mills RD, Trewhella J, Qiu TW, Welte T, Ryan TM, Hanley T, Knott RB, Lithgow T, Mulhern TD (2009) Domain organization of the monomeric form of the Tom70 mitochondrial import receptor. J Mol Biol 388:1043–1058

    Article  Google Scholar 

  • Mitsuoka Y, Niwa T, Ichihara S, Kato K, Muramatsu H, Nakajima K, Shikida M, Sato K (2001) Microfabricated silicon dioxide cantilever with subwavelength aperture. J Microsc 202:12–15

    Article  MathSciNet  Google Scholar 

  • Miyazaki K, Tsugita A (2004) C-Terminal sequencing method for peptides and proteins by the reaction with a vapor of perfluoric acid in acetic anhydride Proteomics 4:11–19

    Google Scholar 

  • Mo W, Karger BL (2002) Analytical aspects of mass spectrometry and proteomics. Curr Opin Chem Biol 6:666–675

    Article  Google Scholar 

  • Mollica V, Borassi A, Relini A, Cavalleri O, Bolognesi M, Rolandi R, Gliozzi A (2001) An atomic force microscopy investigation of protein crystal surface topography. Eur Biophys J 30:313–318

    Article  Google Scholar 

  • Morris VJ, Kirby AR, Gunning AP (1999) Using atomic force microscopy to probe food biopolymer functionality. Scanning 21:287–292

    Article  Google Scholar 

  • Morrison RS, Kinoshita Y, Johnson MD, Uo T, Ho JT, McBee JK, Conrads TP, Veenstra TD (2002) Proteomic analysis in the neurosciences. Mol Cell Proteomics 1:553–560

    Article  Google Scholar 

  • Morton CJ, Pugh DJR, Brown ELJ, Kahmann JD, Renzoni DAC, Campbell ID (1996) Solution structure and peptide binding of the SH3 domain from human Fyn. Structure 4:705–714

    Article  Google Scholar 

  • Mu TW, Ong DS, Wang YJ, Balch WE, Yates JR 3rd, Segatori L, Kelly JW (2008) Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134:769–781

    Article  Google Scholar 

  • Muñoz V, Eaton WA (1999) A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc Natl Acad Sci USA 96:11311–11316

    Article  ADS  Google Scholar 

  • Muramatsu H, Homma K, Chiba N, Yamamoto N, Egawa A (1999) Dynamic etching method for fabricating a variety of tip shapes in the optical fiber probe of a scanning near-field optical microscope. J Microsc 194:383–387

    Article  Google Scholar 

  • Muroga Y (2001) Derivation of the small angle X-ray scattering functions for local conformations of polypeptide chains in solution. Biopolymers 59:320–329

    Article  Google Scholar 

  • Natsume T, Yamauchi Y, Nakayama H, Shinkawa T, Yanagida M, Takahashi N, Isobe T (2002) A direct nanoflow liquid chromatography-tandem mass spectrometry system for interaction proteomics. Anal Chem 74:4725–4733

    Article  Google Scholar 

  • Nemeth-Cawley JF, Rouse JC (2002) Identification and sequencing analysis of intact proteins via collision-induced dissociation and quadrupole time-of-flight mass spectrometry. J Mass Spectrom 37:270–282

    Article  Google Scholar 

  • Niggemann M, Steipl B (2000) Exploring local and nonlocal interactions for protein stability by structural motif engineering. J Mol Biol 296:181–195

    Article  Google Scholar 

  • Nilges M, Macias MJ, O’Donoghue SI, Oschkinat H (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J Mol Biol 269:408–422

    Article  Google Scholar 

  • Nilsson T, Bassani MR, Larsen TO, Montanarella L (1996) Classification of species in the genus Penicillium by Curie point pyrolysis / mass spectrometry followed by multivariate analysis and artificial neural networks. J Mass Spectrom 31:1422–1428

    Article  Google Scholar 

  • Noinville S, Revault M, Baron MH (2002) Conformational changes of enzymes adsorbed at liquid-solid interface: relevance to enzymatic activity. Biopolymers 67:323–326

    Article  Google Scholar 

  • Nölting B (1991) Development of a novel spectrometer for the simultaneous measurement of absorption and circular dichroism (in German). PhD thesis, University of Bochum.

    Google Scholar 

  • Nölting B (1998) Structural resolution of the folding pathway of a protein by correlation of Φ-values with inter-residue contacts. J Theor Biol 194:419–428

    Article  Google Scholar 

  • Nölting B (1999a) Analysis of the folding pathway of chymotrypsin inhibitor by correlation of Φ-values with inter-residue contacts. J Theor Biol 197:113–121

    Google Scholar 

  • Nölting B (1999b, 2005) Protein Folding Kinetics: Biophysical Methods. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nölting B, Andert K (2000) Mechanism of protein folding. Proteins 41:288–298

    Article  Google Scholar 

  • Nölting B, Agard DA (2008) How general is the nucleation–condensation mechanism? Proteins 73, 754–764

    Article  Google Scholar 

  • Nölting B, Golbik R, Fersht AR (1995) Submillisecond events in protein folding. Proc Natl Acad Sci USA 92:10668–10672

    Article  Google Scholar 

  • Nölting B, Golbik R, Neira JL, Soler-Gonzalez AS, Schreiber G, Fersht AR (1997a) The folding pathway of a protein at high resolution from microseconds to seconds. Proc Natl Acad Sci USA 94:826–830

    Google Scholar 

  • Nölting B, Golbik R, Soler-González AS, Fersht AR (1997b) Circular dichroism of denatured barstar shows residual structure. Biochemistry 36:9899–9905

    Google Scholar 

  • Nölting B, Schälike W, Hampel P, Grundig F, Gantert S, Sips N, Bandlow W, Qi PX (2003) Structural determinants of the rate of protein folding. J Theor Biol 223:299–307

    Article  Google Scholar 

  • Nölting B, Jülich D, Vonau W, Andert K (2004) Evolutionary computer programming of protein folding and structure predictions. J theor Biol 229:13–18

    Article  Google Scholar 

  • Nölting B, Salimi N, Guth U (2008) Protein folding forces. J theor Biol 251:331–347

    Article  Google Scholar 

  • Norledge B, Mayr EM, Glockshuber R, Bateman OA, Slingsby C, Jaenicke R, Driessen HPC (1996) The X-ray structures of two mutant crystallin domains shed light on the evolution of multi-domain proteins. Nature Struct Biol 3:267–274

    Article  Google Scholar 

  • Odom TW, Huang JL, Lieber CM (2002) Single-walled carbon nanotubes: from fundamental studies to new device concepts. Ann N Y Acad Sci 960:203–215

    Article  ADS  Google Scholar 

  • Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Müller DJ (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288:143–146

    Article  ADS  Google Scholar 

  • Ogden ID, Strachan NJC (1993) Enumeration of Escherichia coli in cooked and raw meats by ion mobility spectrometry. J Applied Bacteriology 74:402–405

    Google Scholar 

  • Oliveira CL, Behrens MA, Pedersen JS, Erlacher K, Otzen D, Pedersen JS (2009) A SAXS study of glucagon fibrillation. J Mol Biol 387:147–161

    Article  Google Scholar 

  • Orengo CA, Jones DT, Thornton JM (1994) Protein superfamilies and domain superfolds. Nature 372:631–634

    Article  ADS  Google Scholar 

  • Oroudjev E, Soares J, Arcdiacono S, Thompson JB, Fossey SA, Hansma HG (2002) Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy. Proc Natl Acad Sci USA 99:6460–6465

    Article  ADS  Google Scholar 

  • Ostapchenko VG, Makarava N, Savtchenko R, Baskakov IV (2008) The polybasic N-terminal region of the prion protein controls the physical properties of both the cellular and fibrillar forms of PrP. J Mol Biol 383:1210–1224

    Article  Google Scholar 

  • Oubridge C, Ito N, Evans PR, Teo CH, Nagai K (1994) Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372:432–438

    Article  ADS  Google Scholar 

  • Panick G, Malessa R, Winter R, Rapp G, Frye KJ, Royer CA (1998) Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small angle X-ray scattering and Fourier transform infrared spectroscopy. J Mol Biol 275:389–402

    Article  Google Scholar 

  • Panick G, Malessa R, Winter R (1999a) Differences between the pressure- and temperature-induced denaturation and aggregation of β-lactoglobulin A, B, and AB monitored by FTIR spectroscopy and small angle X-ray scattering. Biochemistry 38:6512–6519

    Google Scholar 

  • Panick G, Vidugiris GJ, Malessa R, Rapp G, Winter R, Royer CA (1999b) Exploring the temperature-pressure phase diagram of staphylococcal nuclease. Biochemistry 38:4157–4164

    Google Scholar 

  • Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    Article  ADS  Google Scholar 

  • Pastore A, Saudek V, Ramponi G, Williams RJP (1992) Three-dimensional structure of acylphosphatase refinement and structure analysis. J Mol Biol 224:427–440

    Article  Google Scholar 

  • Pereira RS (2001) Atomic force microscopy as a novel pharmacological tool. Biochem Pharmacol 62:975–983

    Article  Google Scholar 

  • Perez J, Defrenne S, Witz J, Vachette P (2000) Detection and characterization of an intermediate conformation during the divalent ion-dependent swelling of tomato bushy stunt virus. Cell Mol Biol 46:937–948

    Google Scholar 

  • Perkins WD (1986) Fourier transform infrared spectroscopy. J Chem Education 63:A5–A10

    Article  ADS  Google Scholar 

  • Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey TG (1997a) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 119:260–272

    Google Scholar 

  • Perkins G, Renken CW, Song JY, Frey TG, Young SJ, Lamont S, Martone ME, Lindsey S, Ellisman MH (1997b) Electron tomography of large, multicomponent biological structures. J Struct Biol 120:219–227

    Google Scholar 

  • Perutz MF, Rossmann MG, Cullis AF, Muirhead G, Will G, North AT (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5 Å resolution, obtained by X-ray analysis. Nature 185:416–422

    Article  ADS  Google Scholar 

  • Petsko GA, Ringe D (2000) Observation of unstable species in enzyme-catalyzed transformations using protein crystallography. Curr Opin Chem Biol 4:89–94

    Article  Google Scholar 

  • Philippsen A, Im W, Engel A, Schirmer T, Roux B, Müller DJ (2002) Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin. Biophys J 82:1667–1676

    Article  Google Scholar 

  • Phillips J, Gormally J (1992) The laser desorption of organic molecules in ion mobility spectrometry. Int J Mass Spectrom Ion Processes 112:205–214

    Article  ADS  Google Scholar 

  • Phillips GN Jr, Arduini RM, Springer BA, Sligar SG (1990) Crystal structure of myoglobin from a synthetic gene. Proteins 7:358–365

    Article  Google Scholar 

  • Phizicky EM, Martzen MR, McCraith SM, Spinelli SL, Xing F, Shull NP, Van Slyke C, Montagne RK, Torres FM, Fields S, Grayhack EJ (2002) Biochemical genomics approach to map activities to genes. Methods Enzymol 350:546–559

    Article  Google Scholar 

  • Pillutla RC, Goldstein NI, Blume AJ, Fisher PB (2002) Target validation and drug discovery using genomic and protein-protein interaction technologies. Expert Opin Ther Targets 6:517–531

    Article  Google Scholar 

  • Plaxco KW, Simons KT, Baker D (1998) Contact order, transition state placement and the refolding rates of single-domain proteins. J Mol Biol 277:985–994

    Article  Google Scholar 

  • Plaxco KW, Simons KT, Ruczinski I, Baker D (2000). Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39:11177–11183

    Article  Google Scholar 

  • Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: image recording with resolution λ/20. Appl Phys Lett 44:651–653

    Article  ADS  Google Scholar 

  • Powell KD, Wales TE, Fitzgerald MC (2002) Thermodynamic stability measurements on multimeric proteins using a new H/D exchange- and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry-based method. Protein Sci 11:841–851

    Article  Google Scholar 

  • Pralle A, Florin EL (2002) Cellular membranes studied by photonic force microscopy. Methods Cell Biol 68:193–212

    Article  Google Scholar 

  • Prechtel K, Bausch AR, Marchi-Artzner V, Kantlehner M, Kessler H, Merkel R (2002) Dynamic force spectroscopy to probe adhesion strength of living cells. Phys Rev Lett 89:028101-1–4

    Article  Google Scholar 

  • Prokop A, Holland CA, Kozlov E, Moore B, Tanner RD (2001) Water-based nanoparticulate polymeric system for protein delivery. Biotechnol Bioeng 75:228–232

    Article  Google Scholar 

  • Prusiner SB (ed) (1999) Prion Biology and Diseases. Cold Spring Harbor Monograph Series, No 38.

    Google Scholar 

  • Purves RW, Barnett DA, Ells B, Guevremont R (2000) Investigation of bovine ubiquitin conformers separated by high-field asymmetric waveform ion mobility spectrometry: cross section measurements using energy-loss experiments with a triple quadrupole mass spectrometer. J Am Soc Mass Spectrom 11:738–745

    Article  Google Scholar 

  • Ranson NA, White HE, Saibil HR (1998) Chaperonins. Biochem J 333:233–242

    Google Scholar 

  • Razatos A (2001) Application of atomic force microscopy to study initial events of bacterial adhesion. Methods Enzymol 337:276–285

    Article  Google Scholar 

  • Reimers JR, Shapley WA, Lambropoulos N, Hush NS (2002) An atomistic approach to conduction between nanoelectrodes through a single molecule. Ann N Y Acad Sci 960:100–130

    Article  ADS  Google Scholar 

  • Renfrey S, Featherstone J (2002) Structural proteomics. Nat Rev Drug Discov 1:175–176

    Article  Google Scholar 

  • Rice LM, Montabana EA, Agard DA (2008) The lattice as allosteric effector: structural studies of αβ- and γ-tubulin clarify the role of GTP in microtubule assembly. Proc Natl Acad Sci USA 105:5378–5383.

    Article  ADS  Google Scholar 

  • Richards FM (1974) The interpretation of protein structures: Total volume, group volume distributions and packing density. J Mol Biol 82:1–14

    Article  Google Scholar 

  • Riddle DS, Grantcharova VP, Santiago JV, Alm E, Ruczinski I, Baker D (1999) Experiment and theory highlight role of native state topology in SH3 folding. Nature Struct Biol 6:1016–1024

    Article  Google Scholar 

  • Riedel M, Müller B, Wintermantel E (2001) Protein adsorption and monocyte activation on germanium nanopyramids. Biomaterials 22:2307–2316

    Article  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  Google Scholar 

  • Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wüthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–321). Nature 382:180–182

    Article  ADS  Google Scholar 

  • Riek R, Wider G, Billeter M, Hornemann S, Glockshuber R, Wüthrich K (1998) Prion protein NMR structure and familial human spongiform encephalopathies. Proc Natl Acad Sci USA 95:11667–11672

    Article  ADS  Google Scholar 

  • Riekel C, Vollrath F (2001) Spider silk fibre extrusion: combined wide- and small angle X-ray microdiffraction experiments. Int J Biol Macromol 29:203–210

    Article  Google Scholar 

  • Rinaldi R, Branca E, Cingolani R, Di Felice R, Calzolari A, Molinari E, Masiero S, Spada G, Gottarelli G, Garbesi A (2002) Biomolecular electronic devices based on self-organized deoxyguanosine nanocrystals. Ann N Y Acad Sci 960:184–192

    Article  ADS  Google Scholar 

  • Rinia HA, Boots JW, Rijkers DT, Kik RA, Snel MM, Demel RA, Killian JA, van der Eerden JP, de Kruijff B (2002) Domain formation in phosphatidylcholine bilayers containing transmembrane peptides: specific effects of flanking residues. Biochemistry 41:2814–2824

    Article  Google Scholar 

  • Rinnerthaler S, Roschger P, Jakob HF, Nader A, Klaushofer K, Fratzl P (1999) Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int 64:422–429

    Article  Google Scholar 

  • Riske KA, Amaral LQ, Lamy-Freund MT (2001) Thermal transitions of DMPG bilayers in aqueous solution: SAXS structural studies. Biochim Biophys Acta 1511:297–308

    Article  Google Scholar 

  • Rodríguez-Pérez MA, Medina-Aunon A, Encarnación-Guevara SM, Bernal-Silvia S, Barrera-Saldaña H, Albar-Ramírez JP (2008) In silico analysis of protein neoplastic biomarkers for cervix and uterine cancer. Clin Transl Oncol 10:604–617

    Article  Google Scholar 

  • Rohlff C, Southan C (2002) Proteomic approaches to central nervous system disorders. Curr Opin Mol Ther 4:251–258

    Google Scholar 

  • Roseman A, Chen S, White H, Braig K, Saibil HR (1996) The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87:241–251

    Article  Google Scholar 

  • Russell R, Millett IS, Doniach S, Herschlag D (2000) Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nature Struct Biol 7:367–370

    Article  Google Scholar 

  • Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, Horwich AL (1999) GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97:325–338

    Article  Google Scholar 

  • Saibil H (2000a) Molecular chaperones: containers and surfaces for folding, stabilizing or unfolding proteins. Curr Opin Struct Biol 10:251–258

    Google Scholar 

  • Saibil HR (2000b) Conformational changes studied by cryo-electron microscopy. Nature Struct Biol 7:711–714

    Google Scholar 

  • Samgina TY, Artemenko KA, Gorshkov VA, Ogourtsov SV, Zubarev RA, Lebedev AT (2008) De novo sequencing of peptides secreted by the skin glands of the Caucasian Green Frog Rana ridibunda. Rapid Commun Mass Spectrom 22:3517–3525

    Article  Google Scholar 

  • Sandhu KK, McIntosh CM, Simard JM, Smith S, Rotello VM (2002) Gold nanoparticlemediated transfection of mammalian cells. Bioconjug Chem 13:3–6

    Article  Google Scholar 

  • Sanger F (1988) Sequences, sequences, and sequences. Annu Rev Biochem 57:1–28

    Article  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  ADS  Google Scholar 

  • Sano Y, Inoue H, Hiragi Y (1999) Differences of reconstitution process between tobacco mosaic virus and cucumber green mottle mosaic virus by synchrotron small angle X-ray scattering using low-temperature quenching. J Protein Chem 18:801–805

    Article  Google Scholar 

  • Sarkar S, Rubinsztein DC (2008) Small molecule enhancers of autophagy for neurodegenerative diseases. Mol Biosyst 4:895–901

    Article  Google Scholar 

  • Sato M, Hida M, Nagase H (2001) Analysis of pyrolysis products of dimethylamphetamine. J Anal Toxicol 25:304–309

    Google Scholar 

  • Saurina J, Hernandez-Cassou S (1999) Flow-injection and stopped-flow completely continuous flow spectrometric determination of aniline and cyclohexylamine. Anal Chim Acta 396:151–159

    Article  Google Scholar 

  • Scheuring S, Stahlberg H, Chami M, Houssin C, Rigaud JL, Engel A (2002) Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope. Mol Microbiol 44:675–684

    Article  Google Scholar 

  • Schindelin H, Marahiel MA, Heinemann U (1993) Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364:164–168

    Article  ADS  Google Scholar 

  • Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287:1615–1622

    Article  ADS  Google Scholar 

  • Schmid MB (2002) Structural proteomics: the potential of high-throughput structure determination. Trends Microbiol. 10(Suppl):S27–31

    Article  ADS  Google Scholar 

  • Schmitke JL, Stern LJ, Klibanov AM (1997) The crystal structure of subtilisin Carlsberg in anhydrous dioxane and its comparison with those in water and acetonitrile. Proc Natl Acad Sci USA 94:4250–4255

    Article  ADS  Google Scholar 

  • Schmitke JL, Stern LJ, Klibanov AM (1998) Comparison of X-ray crystal structures of an acyl-enzyme intermediate of subtilisin Carlsberg formed in anhydrous acetonitrile and in water. Proc Natl Acad Sci USA 95:12918–12923

    Article  ADS  Google Scholar 

  • Schnurpfeil R, Klepel S (2000) Radioactivity ion sources for miniaturized ion mobility spectrometers. US Patent 6,064,070

    Google Scholar 

  • Schönbrunn E, Svergun DI, Amrhein N, Koch MH (1998) Studies on the conformational changes in the bacterial cell wall biosynthetic enzyme UDP-N-acetylglucosamine enolpyruvyltransferase (MurA). Eur J Biochem 15:406–412

    Article  Google Scholar 

  • Schröder W, Matz G, Kubler J (1998) Fast detection of preservatives on waste wood with GC/MS, GC-ECD and ion-mobility spectrometry. Field Anal Chem Technol 2:287–297

    Article  Google Scholar 

  • Schurmann G, Noell W, Staufer U, de Rooij NF (2000) Microfabrication of a combined AFM-SNOM sensor. Ultramicroscopy 82:33–38

    Article  Google Scholar 

  • Schwartz DE, Mancinelli RL, White MR (1995) Search for life on Mars: evaluation of techniques. Adv Space Res 15:193–197

    Article  Google Scholar 

  • Schweitzer-Stenner R (2002) Dihedral angles of tripeptides in solution directly determined by polarized Raman and FTIR spectroscopy. Biophys J 83:523–532

    Article  Google Scholar 

  • Schwesinger F, Ros R, Strunz T, Anselmetti D, Güntherodt HJ, Honegger A, Jermutus L, Tiefenauer L, Plückthun A (2000) Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc Natl Acad Sci USA 97:9972–9977

    Article  ADS  Google Scholar 

  • Scott DJ, Grossmann JG, Tame JR, Byron O, Wilson KS, Otto BR (2002) Low resolution solution structure of the Apo form of Escherichia coli haemoglobin protease Hbp. J Mol Biol 315:1179–1187

    Article  Google Scholar 

  • Seeman NC, Belcher AM (2002) Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci USA 99:6451–6455

    Article  ADS  Google Scholar 

  • Segel DJ, Eliezer D, Uversky V, Fink AL, Hodgson KO, Doniach S (1999) Transient dimer in the refolding kinetics of cytochrome c characterized by small angle X-ray scattering. Biochemistry 38:15352–15359

    Article  Google Scholar 

  • Sekatskii SK, Dietler G (1999) Near-field optical excitation as a dipole-dipole energy transfer process. J Microsc 194:255–259

    Article  Google Scholar 

  • Seong GH, Kobatake E, Miura K, Nakazawa A, Aizawa M (2002) Direct atomic force microscopy visualization of integration host factor-induced DNA bending structure of the promoter regulatory region on the Pseudomonas TOL plasmid. Biochem Biophys Res Commun 291:361–366

    Article  Google Scholar 

  • Service RF (2001) Breakthrough of the year. Molecules get wired. Science 294:2442–2443

    Article  Google Scholar 

  • Service RF (2002) Analytical chemistry – new test could speed bioweapon detection. Science 295:1447–1447

    Article  Google Scholar 

  • Shakhnovich EI (1997) Theoretical studies of protein-folding thermodynamics and kinetics. Curr Opin Struct Biol 7:29–40

    Article  Google Scholar 

  • Shakhnovich E, Abkevich V, Ptitsyn O (1996) Conserved residues and the mechanism of protein folding. Nature 379:96–98

    Article  ADS  Google Scholar 

  • Shell SM, Hess S, Kvaratskhelia M, Zou Y (2005). Mass spectrometric identification of lysines involved in the interaction of human replication protein a with single-stranded DNA. Biochemistry 44:971–978

    Article  Google Scholar 

  • Shevchenko A, Loboda A, Shevchenko A, Ens W, Standing KG (2000) MALDI Quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research. Anal Chem 72, 2132–2141

    Article  Google Scholar 

  • Shilton B, Svergun DI, Volkov VV, Koch MH, Cusack S, Economou A (1998) Escherichia coli SecA shape and dimensions. FEBS Lett 436:277–282

    Article  Google Scholar 

  • Shumate CB, Hill HH (1989) Coronaspray nebulization and ionization of liquid samples for ion mobility spectrometry. Anal Chem 61:601–606

    Article  Google Scholar 

  • Simpson AA, Tao YZ, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL, Baker TS, Rossmann MG (2000) Structure of the bacteriophage Φ29 DNA packaging motor. Nature 408:745–750

    Article  ADS  Google Scholar 

  • Sisson PR, Freeman R, Magee JG, Lightfoot NF (1991) Differentiation between mycobacteria of the Mycobacterium tuberculosis complex by pyrolysis mass spectrometry. Tubercle 72:206–209

    Article  Google Scholar 

  • Sivaramakrishnan S, Spink BJ, Sim AY, Doniach S, Spudich JA (2008) Dynamic charge interactions create surprising rigidity in the ER/K α-helical protein motif. Proc Natl Acad Sci USA 105:13356–13361

    Article  ADS  Google Scholar 

  • Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage straight Φ29 portal motor can package DNA against a large internal force. Nature 413:748–752

    Article  ADS  Google Scholar 

  • Smith SB, Cui Y, Bustamante C (1996) Overstreaching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799

    Article  ADS  Google Scholar 

  • Smith GB, Eiceman GA, Walsh MK, Critz SA, Andazola E, Ortega E, Cadena F (1997) Detection of Salmonella typhimurium by hand-held ion mobility spectrometer: a quantitative assessment of response characteristics. Field Anal Chem Technol 1:213–226

    Article  Google Scholar 

  • Snabe T, Petersen SB (2002) Application of infrared spectroscopy (attenuated total reflection) for monitoring enzymatic activity on substrate films. J Biotechnol 95:145–155

    Article  Google Scholar 

  • Snow CD, Nguyen H, Pande VS, Gruebele M (2002) Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420:102–106

    Article  ADS  Google Scholar 

  • Snyder AP, Harden CS, Brittain AH, Kim MG, Arnold NS, Meuzelaar HLC (1993) Portable hand-held gas chromatography / ion mobility spectrometry device. Anal Chem 65:299–306

    Article  Google Scholar 

  • Snyder AP, Thornton SN, Dworzanski JP, Meuzelaar HLC (1996) Detection of picolinic acid biomarker in Bacillus spores using a potentially field-portable pyrolysis gas chromatography / ion mobility spectrometer. Field Anal Chem Technol 1:49–59

    Article  Google Scholar 

  • Snyder AP, Maswadeh WM, Parson JP, Tripathi A, Meuzelaar HLC, Dworzanski J, Kim MG (1999) Field detection of Bacillus spore aerosols with stand-alone pyrolysis gas chromatography / ion mobility spectrometry. Field Anal Chem Technol 3:315–326

    Article  Google Scholar 

  • Snyder AP, Maswadeh WM, Tripathi A, Dworzanski JP (2000) Detection of gram-negative Erwinia herbicola outdoor aerosols with pyrolysis gas chromatography / ion mobility spectrometry. Field Anal Chem Technol 4:111–126

    Article  Google Scholar 

  • Snyder AP, Tripathi A, Maswadeh WM, Ho J, Spence M (2001) Field detection and identification of a bioaerosol suite by pyrolysis / gas chromatography / ion mobility spectrometry. Field Anal Chem Technol 5:190–204

    Article  Google Scholar 

  • Spangler GE (1982) Membrane interface for ion mobility detector cells. US Patent 4,311,669

    Google Scholar 

  • Spangler GE (1992a) Preconcentrator for ion mobility spectrometer. US Patent 5,083,019

    Google Scholar 

  • Spangler GE (1992b) Space charge effects in ion mobility spectrometry. Anal Chem 64:1312–1312

    Google Scholar 

  • Spangler GE, Carrico JP (1983) Membrane inlet for ion mobility spectrometry (plasma chromatography). Int J Mass Spectrom Ion Phys 52:267–287

    Article  Google Scholar 

  • Spangler GE, Roehl JE, Patel GB, Dorman A (1994) Photoionization ion mobility spectrometer. US Patent 5,338,931

    Google Scholar 

  • Srajer V, Teng TY, Ursby T, Pradervand C, Ren Z, Adachi SI, Schildkamp W, Bourgeois D, Wulff M, Moffat K (1996) Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science 274:1726–1729

    Article  ADS  Google Scholar 

  • Stachelberger H (2001) personal communication.

    Google Scholar 

  • Stagljar I, Fields S (2002) Analysis of membrane protein interactions using yeast-based technologies. Trends Biochem Sci 27:559–63

    Article  Google Scholar 

  • Steinfeld JI, Wormhoudt J (1998) Explosives detection: a challenge for physical chemistry. Annu Rev Phys Chem 49:203–232

    Article  ADS  Google Scholar 

  • Stephenson JL, McLuckey SA, Reid GE, Wells JM, Bundy JL (2002) Ion/ion chemistry as a top-down approach for protein analysis. Curr Opin Biotechnol 13:57–64

    Article  Google Scholar 

  • St Louis RH, Hill HH (1990) Ion mobility spectrometry in analytical chemistry. CRC Crit Rev Anal Chem 21:321–355

    Article  Google Scholar 

  • Stöckle RM, Fokas C, Deckert V, Zenobi R, Sick B, Hecht B, Wild UP (1999a) High quality near-field optical probes by tube etching. Appl Phys Lett 75:160–162

    Google Scholar 

  • Stöckle RM, Schaller N, Deckert V, Fokas C, Zenobi R (1999b) Brighter near-field optical probes by means of improving the optical destruction threshold. J Microsc 194:378–382

    Google Scholar 

  • Stone E, Gillig KJ, Ruotolo B, Fuhrer K, Gonin M, Schultz A, Russell DH (2001) Surface-induced dissociation on a MALDI ion mobility / orthogonal time-of-flight mass spectrometer: sequencing peptides from an “in-solution” protein digest. Anal Chem 73:2233–2238

    Article  Google Scholar 

  • Strachan NJC, Nicholson FJ, Ogden ID (1995) An automated sampling system using ion mobility spectrometry for the rapid detection of bacteria. Anal Chim Acta 313:63–67

    Article  Google Scholar 

  • Strunz T, Oroszlan K, Schäfer R, Güntherodt HJ (1999) Dynamic force spectroscopy of single DNA molecules. Proc Natl Acad Sci USA 96:11277–11282

    Article  ADS  Google Scholar 

  • Stumpe MC, Grubmüller H (2008) Polar or apolar–the role of polarity for urea-induced protein denaturation. PLoS Comput Biol 4:e1000221

    Article  Google Scholar 

  • Sultana S, Magee JT, Duerden B (1995) Analysis of Bacteroides species by pyrolysis mass spectrometry. Clin Infect Dis 20 Suppl 2:S122–S127

    Google Scholar 

  • Swedberg SA, Kaltenbach P, Witt KE, Bek F, Mittelstadt LS (1996) Fully integrated miaturized planar liquid sample handling and analysis device. US Patent 5,571,410

    Google Scholar 

  • Swedberg SA, Brennen RA (2001) Device for high throughput sample processing, analysis and collection, and methods of use thereof. US Patent 6,240,790

    Google Scholar 

  • Synge EH (1928) A suggested method for extending microscopic resolution into the ultramicroscopic region. Phil Mag 6:356–362

    Google Scholar 

  • Talapatra A, Rouse R, Hardiman G (2002) Protein microarrays: challenges and promises. Pharmacogenomics 3:527–536

    Article  Google Scholar 

  • Tanaka S, Scheraga HA (1975) Model of protein folding: Inclusion of short-, medium-, and long-range interactions. Proc Natl Acad Sci USA 72:3802–3806

    Article  ADS  Google Scholar 

  • Tanaka S, Scheraga HA (1977) Hypothesis about the mechanism of protein folding. Macromolecules 10:291–304

    Article  ADS  Google Scholar 

  • Taylor J, Goodacre R, Wade WG, Rowland JJ, Kell DB (1998) The deconvolution of pyrolysis mass spectra using genetic programming: application to the identification of some Eubacterium species. FEMS Microbiol Lett 160:237–246

    Article  Google Scholar 

  • Taylor SJ (1996) Introduction of samples into an ion mobility spectrometer. US Patent 5,574,277

    Google Scholar 

  • Taylor SJ, Turner RB (1999) Ion mobility spectrometers. US Patent 5,952,652

    Google Scholar 

  • Tcherkasskaya O, Uversky VN (2001) Denatured collapsed states in protein folding: example of apomyoglobin. Proteins 44:244–254

    Article  Google Scholar 

  • Tiana G, Shakhnovich BE, Dokholyan NV, Shakhnovich EI (2004) Imprint of evolution on protein structures. Proc Natl Acad Sci USA 101:2846–2851

    Article  ADS  Google Scholar 

  • Tilleman K, Van den Haute C, Geerts H, van Leuven F, Esmans EL, Moens L (2002) Proteomics analysis of the neurodegeneration in the brain of tau transgenic mice. Proteomics 2:656–665

    Article  Google Scholar 

  • Timmins EM, Goodacre R (1997) Rapid quantitative analysis of binary mixtures of Escherichia coli strains using pyrolysis mass spectrometry with multivariate calibration and artificial neural networks. J Appl Microbiol 83:208–218

    Article  Google Scholar 

  • Tiner WJS, Potaman VN, Sinden RR, Lyubchenko YL (2001) The structure of intramolecular triplex DNA: atomic force microscopy study. J Mol Biol 314:353–357

    Article  Google Scholar 

  • Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M (1992) Near-field differential scanning optical microscope with atomic force regulation. Appl Phys Lett 60:2957–2959

    Article  ADS  Google Scholar 

  • Tripathi A, Maswadeh WM, Snyder AP (2001) Optimization of quartz tube pyrolysis atmospheric pressure ionization mass spectrometry for the generation of bacterial biomarkers. Rapid Commun Mass Spectrom 15:1672–1680

    Article  Google Scholar 

  • Trudel E, Gallant J, Mons S, Mioskowski C, Lebeau L, Jeuris K, Foubert P, De Schryver F, Salesse C (2001) Design of functionalized lipids and evidence for their binding to photosystem II core complex by oxygen evolution measurements, atomic force microscopy, and scanning near-field optical microscopy. Biophys J 81:563–571

    Article  Google Scholar 

  • Turner DR (1983) Etch procedure for optical fibers. US Patent 4,469,554

    Google Scholar 

  • Turner BR (1993) Ion mobility detector. US Patent 5,227,628

    Google Scholar 

  • Unger R, Moult J (1996) Local interactions dominate folding in a simple protein model. J Mol Biol 259:988–994

    Article  Google Scholar 

  • Valle F, Dietler G, Londei P (2001) Single-molecule imaging by atomic force microscopy of the native chaperonin complex of the thermophilic archaeon Sulfolobus solfataricus. Biochem. Biophys Res Commun 288:258–262

    Article  Google Scholar 

  • van den Berg B, Wain R, Dobson CM, Ellis RJ (2000) Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. EMBO J 19:3870–3875

    Article  Google Scholar 

  • van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J (1991) Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science 252:839–842

    Article  ADS  Google Scholar 

  • van Kempen TA, Powers WJ, Sutton AL (2002) Technical note: Fourier transform infrared (FTIR) spectroscopy as an optical nose for predicting odor sensation. J Anim Sci 80:1524–1527

    Google Scholar 

  • van Nuland NAJ, Hangyi IW, van Schaik RC, Berendsen HJC, van Gunsteren WF, Scheek RM, Robillard GT (1994) The high-resolution structure of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from nuclear magnetic resonance nuclear Overhauser effect data. J Mol Biol 237:544–559

    Article  Google Scholar 

  • van Wuijckhuijse AL, van Baar BLM (2008) Recent advances in real-time mass spectrometry detection of bacteria. in: Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems (Zourob M, Elwary S, Turner A, eds) Springer New York, pp. 929–954

    Chapter  Google Scholar 

  • Veerman JA, Otter AM, Kuipers L, van Hulst NF (1998) High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl Phys Lett 72:3115–3117

    Article  ADS  Google Scholar 

  • Vendrell J, Billeter M, Wider G, Aviles FX, Wüthrich K (1991) The NMR structure of the activation domain isolated from porcine procarboxypeptidase B. EMBO J 10:11–15

    Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 194:531–544

    Article  Google Scholar 

  • Voigt J, Schrötter T (1999) Phonon assisted exciton transitions on LHC-II complexes – a long wavelength absorption mechanism by cooperative action of photons and protein vibrations. Zeitschrift Phys Chem 211:181–191

    Google Scholar 

  • Volz K, Matsumura P (1991) Crystal structure of Escherichia coli CheY refined at 1.7 Å resolution. J Biol Chem 266:15511–15519

    Google Scholar 

  • von Ardenne M (1940) Elektronen-Übermikroskopie, Springer, Berlin

    Google Scholar 

  • Vora KN, Carrico JP Sr, Spangler GE, Campbell DN, Martin CE (1987) Ion mobility spectrometer. US Patent 4,712,008

    Google Scholar 

  • Vorm O, Roepstorfft P (1994) Peptide sequence information derived by partial acid hydrolysis and matrix-assisted laser desorption/ionization mass spectrometry. Biol Mass Spectrom 23:734–740

    Article  Google Scholar 

  • Vytvytska O, Nagy E, Bluggel M, Meyer HE, Kurzbauer R, Huber LA, Klade CS (2002) Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2:580–590

    Article  Google Scholar 

  • White HE, Chen S, Roseman AM, Yifrach O, Horovitz A, Saibil H (1997) Structural basis of allosteric changes in the GroEL mutant Arg197→Ala. Nature Struct Biol 4:690–694

    Article  Google Scholar 

  • Whitelegge JP, le Coutre J (2002) Proteomics. Making sense of genomic information for drug discovery. Am J Pharmacogenomics 1:29–35

    Article  Google Scholar 

  • Wikström M, Sjöbring U, Drakenberg T, Forsén S, Björck L (1995) Mapping of the immunoglobulin light chain-binding site of protein L. J Mol Biol 250:128–133

    Article  Google Scholar 

  • Williams AJ, Paulson HL (2008) Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 31:521–528

    Article  Google Scholar 

  • Williams S, Causgrove TP, Gilmanshin R, Fang KS, Callender RH, Woodruff WH, Dyer RB (1996) Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35:691–697

    Article  Google Scholar 

  • Williams JC, Zeelen JP, Neubauer G, Vriend G, Backmann J, Michels PA, Lambeir AM, Wierenga RK (1999) Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Protein Eng 12:243–250

    Article  Google Scholar 

  • Williams BH, Hathout Y, Fenselau C (2002) Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii. J Mass Spectrom 37:259–264

    Article  Google Scholar 

  • Williams RS, Moncalian G, Williams JS, Yamada Y, Limbo O, Shin DS, Groocock LM, Cahill D, Hitomi C, Guenther G, Moiani D, Carney JP, Russell P, Tainer JA (2008) Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strandbreak repair. Cell 135:14–16

    Article  Google Scholar 

  • Williamson RL, Miles MJ (1996) Melt-drawn scanning near-field optical microscopy probe profiles. J Appl Phys 80:4804–4812

    Article  ADS  Google Scholar 

  • Williamson RL, Brereton LJ, Antognozzi M, Miles MJ (1998) Are artefacts in scanning near-field optical microscopy related to the misuse of shear force? Ultramicroscopy 71:165–175

    Article  Google Scholar 

  • Wilmot CM, Pearson AR (2002) Cryocrystallography of metalloprotein reaction intermediates. Curr Opin Chem Biol 6:202–207

    Article  Google Scholar 

  • Wolynes PG, Luthey-Schulten Z, Onuchic JN (1996) Fast folding experiments and the topography of protein-folding energy landscapes. Chem Biol 3:425–432

    Article  Google Scholar 

  • Wu C, Hill HH, Gamerdinger AP (1998a) Electrospay ionization / ion mobility spectrometry as a field monitoring method for the detection of atrazine in natural water. Field Anal Chem Technol 2:155–161

    Google Scholar 

  • Wu C, Siems WF, Asbury GR, Hill HH (1998b) Electrospray ionization high-resolution ion mobility spectrometry / mass spectrometry. Anal Chem 70:4929–4938

    Google Scholar 

  • Wu CY, Chen ST, Chiou SH, Wang KT (1992) Specific peptide-bond cleavage by microwave irradiation in weak acid solution. J Protein Chemistry 11:45–50

    Article  Google Scholar 

  • Wu C, Siems WF, Klasmeier J, Hill HH (2000) Separation of isomeric peptides using electrospray ionization/high-resolution ion mobility spectrometry. Anal Chem 72:391–395

    Article  Google Scholar 

  • Wu Y, Kondrashkina E, Kayatekin C, Matthews CR, Bilsel O (2008) Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein. Proc Natl Acad Sci USA 105:13367–13372

    Article  ADS  Google Scholar 

  • Wuite GJL, Smith SB, Young M, Keller D, Bustamante C (2000) Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404:103–106

    Article  ADS  Google Scholar 

  • Wynne SA, Crowther RA, Leslie AGW (1999) The crystal structure of the human hepatitis B virus capsid. Mol Cell 3:771–780

    Article  Google Scholar 

  • Xu L, Frederik P, Pirollo KF, Tang WH, Rait A, Xiang LM, Huang W, Cruz I, Yin Y, Chang EH (2002) Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery. Hum Gene Ther 13:469–481

    Article  Google Scholar 

  • Yamasaki R, Hoshino M, Wazawa T, Ishii Y, Yanagida T, Kawata Y, Higurashi T, Sakai K, Nagai J, Goto Y (1999) Single molecular observations of the interaction of GroEL with substrate proteins. J Mol Biol 292:965–972

    Article  Google Scholar 

  • Yang YX, Chen ZC, Zhang GY, Yi H, Xiao ZQ (2008) A subcelluar proteomic investigation into vincristine-resistant gastric cancer cell line. J Cell Biochem 104:1010–1021

    Article  Google Scholar 

  • Yannick B, Domitille S, Feliciano P, Yohann C, Jean-Charles S (2009) Glucotoxicity and pancreatic proteomics. J Proteomics 72, in press

    Google Scholar 

  • Ying LM, Bruckbauer A, Rothery AM, Korchev YE, Klenerman D (2002) Programmable delivery of DNA through a nanopipet. Anal Chem 74:1380–1385

    Article  Google Scholar 

  • Yip CM (2001) Atomic force microscopy of macromolecular interactions. Curr Opin Struct Biol 11:567–572

    Article  MathSciNet  Google Scholar 

  • Zeldovich KB, Berezovsky IN, Shakhnovich EI (2006) Physical origins of protein superfamilies. J Mol Biol 357:1335–1343

    Article  Google Scholar 

  • Zhang Y, Skolnick J (2005) The protein structure prediction problem could be solved using the current PDB library. Proc Natl Acad Sci USA 102:1029–1034

    Article  ADS  Google Scholar 

  • Zhang J, Oettmeier W, Gennis RB, Hellwig P (2002a) FTIR spectroscopic evidence for the involvement of an acidic residue in quinone binding in cytochrome bd from Escherichia coli. Biochemistry 41:4612–4617

    Google Scholar 

  • Zhang ZL, Pang DW, Zhang RY, Yan JW, Mao BW, Qi YP (2002b) Investigation of DNA orientation on gold by EC-STM. Bioconjug Chem 13:104–109

    Google Scholar 

  • Zheng W, Doniach S (2002) Protein structure prediction constrained by solution X-ray scattering data and structural homology identification. J Mol Biol 316:173–187

    Article  Google Scholar 

  • Zheng PP, Kros JM, Sillevis-Smitt PA, Theo M Luider Fn FM (2003) Proteomics in primary brain tumors. Front Biosci 8:D451–463

    Article  Google Scholar 

  • Zhong H, Zhang Y, Wen Z, Li L (2004) Protein sequencing by mass analysis of polypeptide ladders after controlled protein hydrolysis. Nat Biotechnol 22:1291–1296

    Article  Google Scholar 

  • Zhou Y, Karplus M (1999) Interpreting the folding kinetics of helical proteins. Nature 401:400–403

    ADS  Google Scholar 

  • Zhou H, Midha A, Mills G, Thoms S, Murad SK, Weaver JMR (1998) Generic scanned-probe microscope sensors by combined micromachining and electron-beam lithography. J Vacuum Sci Technol B 16:54–58

    Article  ADS  Google Scholar 

  • Zhou H, Mills G, Chong BK, Midha A, Donaldson L, Weaver JMR (1999) Recent progress in the functionalization of atomic force microscope probes using electron-beam nanolithography. J Vacuum Sci Technol A 17:2233–2239

    Article  ADS  Google Scholar 

  • Zocchi G (2001) Force measurements on single molecular contacts through evanescent wave microscopy. Biophys J 81:2946–2953

    Article  Google Scholar 

  • Zubarev RA, Chivanov VD, HIkansson P, Sundqvist BUR (1994) Peptide sequencing by partial acid hydrolysis and high resolution plasma desorption mass spectrometry. Rapid Commun Mass Spectrom 8:906–912

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt Nölting .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nölting, B. (2009). References. In: Methods in Modern Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03022-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03022-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03021-5

  • Online ISBN: 978-3-642-03022-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics