Skip to main content

Oblique Shock Reflection at M = 1.7 (Sergio Pirozzoli)

  • Conference paper
  • 2039 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 114))

Presentation of Flow Case

The present report summarizes the activities that have been performed for flow case 3.1 (TUD impinging-shock case) within the context of the European Commission 6th Framework Programme ‘UFAST – Unsteady Effects in Shock Wave Induced Separation’, contract number 012226 (AST4-CT- 2005-012226). The experimental measurements for the case study have been performed at the High Speed Laboratory of the Delft University of Technology department of Aerospace Engineering (partner 7: TUD) The flow case consists in the reflection of an oblique shock from a planar surface in the low supersonic regime. Data have been acquired for a free-stream ofMach 1.7 with an incident shock wave corresponding to a flow deflection of 6o. The peculiar feature of the experiment is the very large Reynolds number (Re θ  ≈ 50000), in view of the substantial boundary layer thickness (δ 99 = 17mm) and high stagnation pressure (230 kPa) upstream of the interaction zone. Particle Image Velocimetry (PIV) has been applied as major diagnostic tool for the investigation of the interaction, both in the standard form (planar two-components and stereo) and in more advanced configurations (notably, Dual-plane and Tomographic PIV).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delery, J., Marvin, J.G.: Shock-wave boundary layer interactions. AGARDograph 280 (1986)

    Google Scholar 

  2. Ducros, F., Ferrand, V., Nicoud, F., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)

    Article  MATH  Google Scholar 

  3. Fares, E., Schröder, W.: A general one-equation turbulence model for free shear and wall-bounded flows. Flow, Turbulence and Combustion 73, 187–215 (2004)

    Article  MATH  Google Scholar 

  4. Ganapathisubramani, B., Clemens, N.T., Dolling, D.S.: Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394 (2007)

    Article  MATH  Google Scholar 

  5. Hanjalic, K.: Will RANS survive LES? a view of perspectives. J. Fluids Eng. 127, 831–839 (2005)

    Article  Google Scholar 

  6. Inagaki, M., Kondoh, T., Nagano, Y.: A mixed-time-scale sgs model with fixed model-parameters for practical LES. J. Fluids Eng. 127(1), 1–13 (2005)

    Article  Google Scholar 

  7. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  Google Scholar 

  8. Li, Q., Coleman, G.N.: DNS of an oblique shock wave impinging upon a turbulent boundary layer. In: Geurts, Friedrich, Metais (eds.) Direct and Large-Eddy Simulations. Ercoftac Series, pp. 387–396. Kluwer, Dordrecht (2003)

    Google Scholar 

  9. Pirozzoli, S., Grasso, F.: Direct Numerical Simulation of isotropic compressible turbulence: Influence of compressibility on dynamics and structures. Phys. Fluids 16(12), 4386–4407 (2004)

    Article  Google Scholar 

  10. Pirozzoli, S., Grasso, F.: Direct Numerical Simulation of impinging shock-wave/turbulent boundary layer interaction at M= 2.25. Phys. Fluids 18(6), 1–17 (2006)

    Article  Google Scholar 

  11. Sagaut, P.: Large-Eddy Simulation for Incompressible Flows: An Introduction to Large-Eddy Simulations. Springer, Heidelberg (2001)

    Google Scholar 

  12. Sandham, N.D., Li, Q., Yee, H.C.: Entropy slitting for high-order numerical simulation of compressible turbulence. J. Comput. Phys. 178, 307–322 (2002)

    Article  MATH  Google Scholar 

  13. Sandham, N.D., Yao, Y.F., Lawal, A.A.: Large-Eddy Simulation of transonic turbulent flow over a bump. Int. J. Heat and Fluid Flow 24(4), 584–595 (2003)

    Article  Google Scholar 

  14. Smits, A.J., Dussauge, J.P.: Turbulent Shear Layers in Supersonic Flow. American Institute of Physics, New York (2006)

    Google Scholar 

  15. Souverein, L., Dupont, P., Debiéve, J., Dussauge, J.P., van Oudheusden, B.W., Scarano, F.: Unsteadiness characterization in a shock wave turbulent boundary layer interaction through dual-PIV. AIAA Paper 2008-4169 (2008a)

    Google Scholar 

  16. Souverein, L.J., van Oudheusden, B.W., Scarano, F., Dupont, P.: Unsteadiness characterization in a shock wave turbulent boundary layer interaction through dual-PIV. AIAA Paper 2008-4169 (2008b)

    Google Scholar 

  17. Souverein, L.J., van Oudheusden, B.W., Scarano, F., Dupont, P.: Application of a dual-plane particle image velocimetry (dual-PIV) technique for the unsteadiness characterization of a shock wave turbulent boundary layer interaction. Meas. Sci. Technol. 20, 074003.1–074003.16 (2009)

    Google Scholar 

  18. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1, 5–21 (1994)

    Google Scholar 

  19. Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Touber, E., Sandham, N.D.: Large-Eddy Simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theoretical and Computational Fluid Dynamics (2009) (accepted for publication)

    Google Scholar 

  21. van Oudheusden, B.W.: Principles and application of velocimetry-based planar pressure imaging in compressible flows with shocks. Exp. Fluids 45, 657–674 (2008)

    Article  Google Scholar 

  22. Wilcox, D.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 11, 1299–1310 (1988)

    Article  MathSciNet  Google Scholar 

  23. Wilcox, D.: Turbulence modeling for CFD. DCW Industries (1998)

    Google Scholar 

  24. Yee, H.C., Sandham, N.D., Djomehri, M.J.: Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doerffer, P., Hirsch, C., Dussauge, JP., Babinsky, H., Barakos, G.N. (2010). Oblique Shock Reflection at M = 1.7 (Sergio Pirozzoli). In: Unsteady Effects of Shock Wave Induced Separation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03004-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03004-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03003-1

  • Online ISBN: 978-3-642-03004-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics