Skip to main content

CONVECTION IN EXTERNAL TURBULENT FLOW

  • Chapter
Heat Convection
  • 3068 Accesses

Introduction

Turbulent flow is a complicated physical phenomenon, and a daunting subject for students of engineering. Turbulent flow is disordered, with random and unsteady velocity fluctuations. This description by itself suggests that exact predictions cannot be determined, and that analysis of turbulent flows will not be easy. However intimidating turbulence may be, its importance is clear: turbulent flows are found in many industrial and natural processes, and affect quantities of great practical importance to engineers, like the local velocity distribution, drag force, and heat transfer. Moreover, a better understanding of this flow allows engineers to make design decisions that could either reduce the effects of turbulence or enhance them, in order to improve the performance of their devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davidson, P.A.: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2007)

    Google Scholar 

  2. Goodgame, C.: High-Tech Swimsuits: Winning Medals Too, Time, August 13 (2008)

    Google Scholar 

  3. Reynolds, O.: An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall be Direct or Sinuous; And of the Law of Resistance in Parallel Channels. Philosophical Transactions of the Royal Society of London 174, Pt. 3, 935–982 (1883)

    Article  Google Scholar 

  4. Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  5. Kolmogorov, A.N.: The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941)

    Google Scholar 

  6. Reynolds, O.: On the Dynamical Theory of Incompressible Viscous Flows and the Determination of the Criterion. Philosophical Transactions of the Royal Society of London 186, 123–161 (1894)

    Google Scholar 

  7. Prandtl, L.: On the Frictional Resistance of Air. Göttinger Ergebinisse 3, 1 (1927)

    Google Scholar 

  8. Clauser, F.H.: The Turbulent Boundary Layer. Advances in Applied Mechanics IV, 91–108 (1954)

    Google Scholar 

  9. Prandtl, L.: Eine Beziehung Zwischen Warmeaustausch und Strömungswiderstand der Flüssigkeit (A Relation between Heat Convection and Flow Resistance in Fluids). Phys. Zeitschr. 11, 1072–1078 (1910)

    Google Scholar 

  10. Taylor, G.I.: Conditions at the Surface of a Hot Body Exposed to the Wind. British Advisory Committee for Aeronautics, Report and Memorandum No. 272, vol. 2, pp. 423–429 (1916)

    Google Scholar 

  11. van Driest, E.R.: On Turbulent Flow near a Wall. J. Aeronautical Sciences 23(11), 1007–1011 (1956)

    Google Scholar 

  12. Spalding, D.B.: A Single Formula for the Law of the Wall. J. Appl. Mech. 28, 455–457 (1961)

    MATH  Google Scholar 

  13. Reichardt, H.: Die Grundlagen des Turbulenten Wärmeübergange (Fundamentals of Turbulent Heat Transfer). Arch. Gesamte Waermetech. 2, 129–142 (1951)

    Google Scholar 

  14. White, F.M.: Viscous Fluid Flow, 3rd edn. McGraw-Hill, Boston (2006)

    Google Scholar 

  15. Coles, D.E.: The Law of the Wake in the Turbulent Boundary Layer. J. Fluid Mech. 1, 191–226 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  16. von Kármán, T.: Über laminare und turbulente Reibung (On laminar and Turbulent Friction). Z. Angew. Math. Mech. 1, 233–252 (1921)

    Google Scholar 

  17. Blasius, H.: Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, No. 131 (1913)

    Google Scholar 

  18. Kestin, J., Persen, L.N.: The Transfer of Heat across a Turbulent Boundary Layer at Very High Prandtl Numbers. Int. J. Heat Mass Transfer 5, 355–371 (1962)

    Article  Google Scholar 

  19. White, F.M.: A New Integral Method for Analyzing the Turbulent Boundary Layer with Arbitrary Pressure Gradient. J. Basic Eng. 91, 371–378 (1969)

    Google Scholar 

  20. Arpaci, V.S., Larsen, P.S.: Convection Heat Transfer. Prentice-Hall, Inc., Englewood Cliffs (1984)

    Google Scholar 

  21. Reynolds, O.: On the Extent and Action of the Heating Surface for Steam Boilers. Proc. Manchester Lit. Philos. Soc. 14, 7–12 (1874)

    Google Scholar 

  22. von Kármán, T.: The Analogy between Fluid Friction and Heat Transfer. Trans. ASME 61, 705–710 (1939)

    Google Scholar 

  23. Colburn, A.P.: A Method of Correlating Forced Convection Heat Transfer Data and a Comparison with Fluid Friction. Trans. Am. Inst. Chem. Eng. 29, 174–210 (1933)

    Google Scholar 

  24. Schlichting, H.: Boundary-Layer Theory, 7th edn. McGraw-Hill, New York (1987)

    Google Scholar 

  25. Bejan, A.: Convection Heat Transfer, 3rd edn. John Wiley and Sons, Inc., Chichester (2004)

    Google Scholar 

  26. Kays, W.M.: Turbulent Prandtl Number – Where Are We? J. Heat Transfer 116, 284–295 (1994)

    Article  Google Scholar 

  27. Kakaç, S., Yener, Y.: Convective Heat Transfer, 2nd edn. CRC Press, Boca Raton (1995)

    Google Scholar 

  28. Churchill, S.W., Zajic, S.C.: Prediction of Fully Developed Turbulent Convection with Minimal Explicit Empiricism. AIChE J. Fluid Mech. and Transport Phenomena 48(5), 927–940 (2002)

    Google Scholar 

  29. Kays, W.M., Crawford, M.E., Weigand, B.: Convective Heat and Mass Transfer, 4th edn. McGraw-Hill, Boston (2005)

    Google Scholar 

  30. Bogard, D.G., Schmidt, D.L., Tabbita, M.: Characterization and Laboratory simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer. J. Turbomachinery 2, 337–343 (1998)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiji, L.M. (2009). CONVECTION IN EXTERNAL TURBULENT FLOW. In: Heat Convection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02971-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02971-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02970-7

  • Online ISBN: 978-3-642-02971-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics