Skip to main content

Electromagnetism-like Mechanism with Force Decay Rate Great Deluge for the Course Timetabling Problem

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5589))

Included in the following conference series:

Abstract

Combinations of population-based approaches with local search have provided very good results for a variety of scheduling problems. This paper describes the development of a population-based algorithm called Electromagnetism-like mechanism with force decay rate great deluge algorithm for university course timetabling. This problem is concerned with the assignment of lectures to a specific numbers of timeslots and rooms. For a solution to be feasible, a number of hard constraints must be satisfied. A penalty value which represents the degree to which various soft constraints are satisfied is measured which reflects the quality of the solution. This approach is tested over established datasets and compared against state-of-the-art techniques from the literature. The results obtained confirm that the approach is able to produce solutions to the course timetabling problem which demonstrate some of the lowest penalty values in the literature on these benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullah, S., Burke, E.K.: A Multi-start large neighbourhood search approach with local search methods for examination timetabling. In: The International Conference on Automated Planning and Scheduling (ICAPS 2006), pp. 334–337 (2006)

    Google Scholar 

  2. Abdullah, S., Turabieh, H.: Generating university course timetable using genetic algorithms and local search. In: The Third 2008 International Conference on Convergence and Hybrid Information Technology ICCIT, vol. I, pp. 254–260 (2008)

    Google Scholar 

  3. Abdullah, S., Burke, E.K., McCollum, B.: An investigation of variable neighbourhood search for university course timetabling. In: The 2nd Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA), pp. 413–427 (2005)

    Google Scholar 

  4. Abdullah, S., Burke, E.K., McCollum, B.: Using a randomised iterative improvement algorithm with composite neighbourhood structures for university course timetabling. In: Metaheuristics: Progress in complex systems optimization. Operations Research / Computer Science Interfaces Series, ch. 8. Springer, Heidelberg (2007a)

    Google Scholar 

  5. Abdullah, S., Burke, E.K., McCollum, B.: A hybrid evolutionary approach to the university course timetabling problem. In: IEEE Congres on Evolutionary Computation, pp. 1764–1768 (2007b) ISBN: 1-4244-1340-0

    Google Scholar 

  6. Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. Journal of Global Optimization 25, 263–282 (2003)

    Article  MATH  Google Scholar 

  7. Birbil, S.I., Fang, S.C., Sheu, R.L.: On the convergence of a population-based global optimization algorithm. Journal of Global Optimization 30, 301–318 (2004)

    Article  MATH  Google Scholar 

  8. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyper-heuristic for timetabling and rostering. Journal of Heuristics 9(6), 451–470 (2003)

    Article  Google Scholar 

  9. Burke, E.K., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for timetabling problems. European Journal of Operational Research 176, 177–192 (2007)

    Article  MATH  Google Scholar 

  10. Carter, M.W.: A survey of practical applications of examination timetabling algorithms. Operations Research 34, 193–202 (1986)

    Article  Google Scholar 

  11. Debels, D., Vanhoucke, M.: An electromagnetism meta-heuristic for the resource-constrained project scheduling problem. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 259–270. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A hybrid scatter search/electromagnetism metaheuristic for project scheduling. Eur. J. Oper. Res. 169, 638–653 (2006)

    Article  MATH  Google Scholar 

  13. Dueck, G.: New Optimization Heuristics. The great deluge algorithm and the record-to-record travel. Journal of Computational Physics 104, 86–92 (1993)

    Article  MATH  Google Scholar 

  14. Landa-Silva, D., Obit, J.H.: Great deluge with non-linear decay rate for solving course timetabling problem. In: The fourth international IEEE conference on Intelligent Systems, Varna, Bulgaria (2008)

    Google Scholar 

  15. Maenhout, B., Vanhoucke, M.: An electromagnetic meta-heuristic for the nurse scheduling problem. Journal of Heuristics 13, 315–401 (2007)

    Article  Google Scholar 

  16. McCollum, B.: A perspective on bridging the gap between theory and practice in university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 3–23. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A., Di Gaspero, L., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: The second international timetabling competition. Accepted for publication to INFORMS Journal of Computing (2007)

    Google Scholar 

  18. McMullan, P.: An extended implementation of the great deluge algorithm for course timetabling. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 538–545. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Petrovic, S., Burke, E.K.: University timetabling. In: Leung, J. (ed.) Handbook of Scheduling: Algorithms, Models and Performance Analysis, ch. 45. CRC Press, Boca Raton (2004)

    Google Scholar 

  20. Rossi-Doria, O., Samples, M., Birattari, M., Chiarandini, M., Dorigo, M., Gambardella, L.M., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L., Stützle, T.: A comparison of the performance of different meta-heuristics on the timetabling problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 329–354. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Socha, K., Knowles, J., Samples, M.: A max-min ant system for the university course timetabling problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 1–13. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turabieh, H., Abdullah, S., McCollum, B. (2009). Electromagnetism-like Mechanism with Force Decay Rate Great Deluge for the Course Timetabling Problem. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds) Rough Sets and Knowledge Technology. RSKT 2009. Lecture Notes in Computer Science(), vol 5589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02962-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02962-2_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02961-5

  • Online ISBN: 978-3-642-02962-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics