Skip to main content

Monitoring the Depth of Anesthesia Using Discrete Wavelet Transform and Power Spectral Density

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5589))

Included in the following conference series:

  • 2655 Accesses

Abstract

This method combines wavelet techniques and power spectral density to monitor the depth of anesthesia (DOA) based on simplified EEG signals. After decomposing electroencephalogram (EEG) signals, the power spectral density is chosen as a feature function for coefficients of discrete wavelet transform. By computing the mean and standard deviation of the power spectral density values, we can classify the EEG signals to three classes, corresponding with the BIS values of 0 to 40, 40 to 60, and 60 to 100. Finally, three linear functions (\(f_1(\overline{S}_j\)),\(f_2(\overline{S}_j\)), \(f_3(\overline{S}_j\)))are proposed to compute DOA values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruhn, J., Myles, P.S., Sneyd, R., Struys, M.M.R.F.: Depth of anaesthesia monitoring: what’s available, what’s validated and what’s next? British Journal of Anaesthesia 97(1), 85–94 (2006)

    Article  Google Scholar 

  2. Huang, J.W., Lu, Y.-Y., Nayak, A., Roy, R.J.: Depth of anaesthesia estimation and control. IEEE Trans. on biomedical engineering 46(1), 71–81 (1999)

    Article  Google Scholar 

  3. Drummond, J.C.: Monitoring depth of anaesthesia. Anaesthesiology 93(3), 876–882 (2000)

    Article  Google Scholar 

  4. Kelly, S.D.: Monitoring consciousness using the Bispectrum Index during anaesthesia. A pocket guide for clinicians, Aspect medical systems (2007)

    Google Scholar 

  5. Miller, A., Sleigh, J.W., Barnard, J., Steyn-Ross, D.A.: Does bispectral analysis add anything but complexity? BIS sub-components may be superior to BIS for detection of awareness. British J. Anaesthesia 93(4), 596–597 (2004)

    Article  Google Scholar 

  6. Barr, G., Jakobson, J.G., Owall, A., Anderson, R.E.: Nitrous oxide does not alter bispectral index: Study with nitrous oxide as a sole agent and as a adjunct to i.v. anesthesia. British J. Anaesthesia 82(6), 8227–8230 (1999)

    Article  Google Scholar 

  7. Johansen, J.W., Sebel, P.S.: Development and clinical application of electroencephalographic bispectrum monitoring. Anesthesiol. 93(5), 1336–1344 (2000)

    Article  Google Scholar 

  8. Morioka, N., Ozaki, M., Matsukowa, T., Sessler, D.I., Atarashi, K., Suzuki, H.: Ketamine causes a paradoxial increase in the bispectral index. Anesthesiol. 87, A502 (1997)

    Article  Google Scholar 

  9. Hall, J.D., Lockwood, G.G.: Bispectral index: Comparison of two montages. British J. Anaesthesia 80(3), 342–344 (1998)

    Article  Google Scholar 

  10. Pilge, S., et al.: Time delay of index calculation. Anesthesiology 104, 488–494 (2006)

    Article  Google Scholar 

  11. Zikov, T., Bibian, S., Dumont, G.A., Huzmezan, M., Ries, C.R.: Quantifying cortical activity during general anaesthesia using wavelet analysis. IEEE Trans. on biomedical engineering 53(4), 71–81 (2006)

    Article  Google Scholar 

  12. Ferents, R., Lipping, T., Anier, A., Jäntti, V., Melto, S., Hovilehto, S.: Comparison of entropy and complexity measures for the assessment of depth of a sedation. IEEE Trans. on biomedical engineering 53(6), 1067–1077 (2006)

    Article  Google Scholar 

  13. Gifani, P., Rabiee, H.R., Hashemi, M.H., Taslimi, P., Ghabari, M.: Optimal frac-scaling analysis of human eeg dynamic for depth of anesthesia quantification. Journal of the Franklin Institute 344(3-4), 212–229 (2007)

    Article  MATH  Google Scholar 

  14. Rampil, I.: A primer for EEG signal processing in anaesthesia. Anesthesiology 89, 980–1002 (1998)

    Article  Google Scholar 

  15. Mallat, S.: A Wavelet Tour of Signal Processing, pp. 255–258. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  16. Schwilden, H., et al.: Closed-loop feedback control of methohexital anesthesia by quantitative EEG analysis in human. Anesthesiology 67, 341–347 (1987)

    Article  Google Scholar 

  17. Rampil, I., et al.: Spectral edge frequency – a new correlate of anesthetic depth. Anesthesiology 53, S12 (1980)

    Article  Google Scholar 

  18. The MathWorks, Pseudospectrum using eigenvector method. Signal Processing Toolbox (1994-2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen-Ky, T., Wen, P., Li, Y. (2009). Monitoring the Depth of Anesthesia Using Discrete Wavelet Transform and Power Spectral Density. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds) Rough Sets and Knowledge Technology. RSKT 2009. Lecture Notes in Computer Science(), vol 5589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02962-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02962-2_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02961-5

  • Online ISBN: 978-3-642-02962-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics