Skip to main content

Combinable Extensions of Abelian Groups

  • Conference paper
Automated Deduction – CADE-22 (CADE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5663))

Included in the following conference series:

Abstract

The design of decision procedures for combinations of theories sharing some arithmetic fragment is a challenging problem in verification. One possible solution is to apply a combination method à la Nelson-Oppen, like the one developed by Ghilardi for unions of non-disjoint theories. We show how to apply this non-disjoint combination method with the theory of abelian groups as shared theory. We consider the completeness and the effectiveness of this non-disjoint combination method. For the completeness, we show that the theory of abelian groups can be embedded into a theory admitting quantifier elimination. For achieving effectiveness, we rely on a superposition calculus modulo abelian groups that is shown complete for theories of practical interest in verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Transactions on Computational Logic 10(1) (2009)

    Google Scholar 

  2. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Information and Computation 183(2), 140–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories: Combining decision procedures. Journal of Symbolic Computation 21(2), 211–243 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonacina, M.P., Echenim, M.: T-decision by decomposition. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 199–214. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability and undecidability results for Nelson-Oppen and rewrite-based decision procedures. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 513–527. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Boudet, A., Jouannaud, J.-P., Schmidt-Schauß, M.: Unification in boolean rings and abelian groups. In: Kirchner, C. (ed.) Unification, pp. 267–296. Academic Press, London (1990)

    Google Scholar 

  7. Chenadec, P.L.: Canonical Forms in Finitely Presented Algebras. Research Notes in Theoretical Computer Science. Pitman-Wiley, Chichester (1986)

    MATH  Google Scholar 

  8. de Moura, L.M., Bjørner, N.: Engineering DPLL(T) + saturation. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 475–490. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Science 17(3), 279–301 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eklof, P.C., Sabbagh, G.: Model-completions and modules. Annals of Mathematical Logic 2, 251–295 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive combination framework. ACM Transactions on Computational Logic 9(2), 1–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Godoy, G., Nieuwenhuis, R.: Superposition with completely built-in abelian groups. Journal of Symbolic Computation 37(1), 1–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hodges, W.: Model Theory. Encyclopedia of Mathematics and its Applications, vol. 42. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  14. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Lynch, C., Tran, D.-K.: Automatic Decidability and Combinability Revisited. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 328–344. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transaction on Programming Languages and Systems 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  17. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable Extensions of Abelian Groups. Research Report, INRIA, RR-6920 (2009)

    Google Scholar 

  18. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Satisfiability procedures for combination of theories sharing integer offsets. In: TACAS 2009. LNCS, vol. 5505, pp. 428–442. Springer, Heidelberg (2009)

    Google Scholar 

  19. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch.7, vol. I, pp. 371–443. Elsevier Science, Amsterdam (2001)

    Chapter  Google Scholar 

  20. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. J. ACM 28(2), 233–264 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Plotkin, G.: Building-in equational theories. Machine Intelligence 7, 73–90 (1972)

    MATH  Google Scholar 

  22. Stuber, J.: Superposition theorem proving for abelian groups represented as integer modules. Theoretical Computer Science 208(1-2), 149–177 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Waldmann, U.: Superposition and chaining for totally ordered divisible abelian groups. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 226–241. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  24. Waldmann, U.: Cancellative abelian monoids and related structures in refutational theorem proving (Part I,II). Journal of Symbolic Computation 33(6), 777–829 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, T.: Arithmetic integration of decision procedures. PhD thesis, Department of Computer Science, Stanford University, Stanford, US (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nicolini, E., Ringeissen, C., Rusinowitch, M. (2009). Combinable Extensions of Abelian Groups. In: Schmidt, R.A. (eds) Automated Deduction – CADE-22. CADE 2009. Lecture Notes in Computer Science(), vol 5663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02959-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02959-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02958-5

  • Online ISBN: 978-3-642-02959-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics