Skip to main content

High Complexity Tilings with Sparse Errors

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5555))

Abstract

Tile sets and tilings of the plane appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). The idea is to enforce some global properties (of the entire tiling) by means of local rules (for neighbor tiles). A fundamental question: Can local rules enforce a complex (highly irregular) structure of a tiling?

The minimal (and weak) notion of irregularity is aperiodicity. R. Berger constructed a tile set such that every tiling is aperiodic. Though Berger’s tilings are not periodic, they are very regular in an intuitive sense.

In [3] a stronger result was proven: There exists a tile set such that all n×n squares in all tilings have Kolmogorov complexity Ω(n), i.e., contain Ω(n) bits of information. Such a tiling cannot be periodic or even computable.

In the present paper we apply the fixed-point argument from [5] to give a new construction of a tile set that enforces high Kolmogorov complexity tilings (thus providing an alternative proof of the results of [3]). The new construction is quite flexible, and we use it to prove a much stronger result: there exists a tile set such that all tilings have high Kolmogorov complexity even if (sparse enough) tiling errors are allowed.

Supported by NAFIT ANR-08-EMER-008-01 and RFBR 09-01-00709-a grants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, R.: The Undecidability of the Domino Problem. Mem. Amer. Math. Soc. 66 (1966)

    Google Scholar 

  2. Culik, K.: An Aperiodic Set of 13 Wang Tiles. Discrete Math. 160, 245–251 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Durand, B., Levin, L., Shen, A.: Complex Tilings. J. Symbolic Logic 73(2), 593–613 (2008); see also Proc. 33rd Ann. ACM Symp. Theory Computing, pp. 732–739 (2001), www.arxiv.org/cs.CC/0107008

  4. Durand, B., Levin, L., Shen, A.: Local Rules and Global Order, or Aperiodic Tilings. Math. Intelligencer 27(1), 64–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Durand, B., Romashchenko, A., Shen, A.: Fixed point and aperiodic tilings. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 276–288. Springer, Heidelberg (2008), http://arxiv.org/abs/0802.2432

    Chapter  Google Scholar 

  6. Gács, P.: Reliable Cellular Automata with Self-Organization. In: Proc. 38th Ann. Symp. Found. Comput. Sci., pp. 90–97 (1997)

    Google Scholar 

  7. Gács, P.: Reliable Cellular Automata with Self-Organization. J. Stat. Phys. 103(1/2), 45–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kari, J.: A Small Aperiodic Set of Wang tiles. Discrete Math. 160, 259–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rogers, H.: The Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)

    Google Scholar 

  10. Lafitte, G., Weiss, M.: Computability of Tilings. In: IFIP TCS 2008, pp. 187–201 (2008)

    Google Scholar 

  11. Levin, L.: Aperiodic Tilings: Breaking Translational Symmetry. Computer J. 48(6), 642–645 (2005); http://www.arxiv.org/cs.DM/0409024

  12. von Neumann, J.: Theory of Self-reproducing Automata. In: Burks, A. (ed.), University of Illinois Press (1966)

    Google Scholar 

  13. Robinson, R.: Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones Mathematicae 12, 177–209 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bienvenu, L., Romashchenko, A., Shen, A.: Sparse sets. Journées Automates Cellulaires 2008 (Uzès), 18–28, MCCME Publishers (2008); http://hal.archives-ouvertes.fr/docs/00/27/40/10/PDF/18-28.pdf

  15. Rumyantsev, A.Y., Ushakov, M.A.: Forbidden substrings, kolmogorov complexity and almost periodic sequences. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 396–407. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand, B., Romashchenko, A., Shen, A. (2009). High Complexity Tilings with Sparse Errors. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02927-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02927-1_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02926-4

  • Online ISBN: 978-3-642-02927-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics