Skip to main content

SOS for Nonlinear Delayed Models in Biology and Networking

  • Chapter
Topics in Time Delay Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 388))

  • 1957 Accesses

Summary

In this chapter we illustrate how the Sum of Squares decomposition can be used for understanding the stability properties of models of models of biological and communication networks. The models we consider are in the form of nonlinear delay differential equations with multiple, incommensurate delays. Using the sum of squares approach, appropriate Lyapunov-Krasovskii functionals can be constructed, both for testing delay-independent and delay-dependent stability. We illustrate the methodology using examples from congestion control for the Internet and gene regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Toker, O., Ozbay, H.: Complexity issues in robust stability of linear delay-differential systems. Math. Control, Signals, Syst. 9, 386–400 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Breda, D., Maset, S., Vermiglio, R.: Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM Journal on Scientific Computing 27(2), 482–495 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ergenc, A.F., Olgac, N., Fazelinia, H.: Extended kronecker summation for cluster treatment of LTI systems with multiple delays. SIAM Journal on Control and Optimization 46(1), 143–155 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fazelinia, H., Sipahi, R., Olgac, N.: Stability robustness analysis of multiple time-delayed systems using “building block” concept. IEEE Transactions on Automatic Control 52(5), 799–810 (2007)

    Article  MathSciNet  Google Scholar 

  5. Gu, K., Niculescu, S.I., Chen, J.: On stability crossing curves for general systems with two delays. Journal of Mathematical Analysis and Applications 311, 231–253 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao, Y.Y., Sun, Y.X., Cheng, C.: Delay-dependent robust stabilization of uncertain systems with multiple state delays. IEEE Transactions on Automatic Control 43(11), 1608–1612 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. In: Applied Mathematical Sciences, p. 99. Springer, New York (1993)

    Google Scholar 

  8. Mehdi, D., Boukas, E.K., Liu, Z.K.: Dynamical systems with multiple time-varying delays: Stability and stabilizability. Journal of Optimization Theory and Applications 113(3), 537–565 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Xu, B., Liu, Y.H.: Delay dependent/delay independent stability of linear systems with multiple time-varying delays. IEEE Transactions on Automatic Control 48(4), 697–701 (2003)

    Article  Google Scholar 

  10. Papachristodoulou, A.: Analysis of nonlinear time delay systems using the sum of squares decomposition. In: Proceedings of the American Control Conference, Boston, US (2004)

    Google Scholar 

  11. Peet, M., Lall, S.: Constructing Lyapunov functions for nonlinear delay-differential equations using semidefinite programming. In: Proceedings of IFAC Symp. NOLCOS (2004)

    Google Scholar 

  12. Papachristodoulou, A.: Scalable Analysis of Nonlinear Systems Using Convex Optimization. PhD thesis, California Institute of Technology, Pasadena, CA (2005)

    Google Scholar 

  13. Peet, M.M.: Stability and Control of Functional Differential Equations. PhD thesis, Stanford University, Palo Alto, CA (2006)

    Google Scholar 

  14. Srikant, R.: The Mathematics of Internet Congestion Control. Birkhäuser, Boston (2003)

    Google Scholar 

  15. Jacobson, V.: Congestion avoidance and control. In: Proceedings of ACM SIGCOMM 1988 (1988), ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

  16. Shakkottai, S., Srikant, R.: How good are deterministic fluid models of internet congestion control. In: Proc. of IEEE Infocom (2002)

    Google Scholar 

  17. Mathis, M., Semske, J., Mahdavi, J., Ott, T.: The macroscopic behavior of the TCP congestion avoidance algorithm. Computer Communication Review (1997)

    Google Scholar 

  18. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: A simple model and its empirical validation. In: Proc. ACM Sigcomm (2001)

    Google Scholar 

  19. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D thesis, California Institute of Technology, Pasadena, CA (2000)

    Google Scholar 

  20. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM Journal of Optimization 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nesterov, Y.: Squared functional systems and optimization problems. In: High Performance Optimization Methods, pp. 405–439. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  22. Henrion, D., Garulli, A. (eds.): Positive Polynomials in Control. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  23. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: SOSTOOLS – Sum of Squares Optimization Toolbox, User’s Guide (2002), http://www.cds.caltech.edu/sostools

  24. Putinar, M.: Positive polynomials on compact semialgebraic sets. Indiana University Mathematics Journal 42(3), 969–984 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  26. Bernard, S., Čajavec, B., Pujo-Menjouet, L., Mackey, M.C., Herzel, H.: Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations. Phil. Trans. R. Soc. A 364, 1155–1170 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Papachristodoulou, A., Peet, M.M. (2009). SOS for Nonlinear Delayed Models in Biology and Networking. In: Loiseau, J.J., Michiels, W., Niculescu, SI., Sipahi, R. (eds) Topics in Time Delay Systems. Lecture Notes in Control and Information Sciences, vol 388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02897-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02897-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02896-0

  • Online ISBN: 978-3-642-02897-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics