Skip to main content

Carbon Capture and Storage (CCS)

  • Chapter
  • First Online:
Power Generation from Solid Fuels

Part of the book series: Power Systems ((POWSYS))

Abstract

Worldwide anthropogenic CO2 emissions were around 26,Gt CO2/year in the year 2005. This quantity can be attributed to the use of crude oil, coal and natural gas, contributing 40, 40 and 20%, respectively. Around 60% of the total emissions can be put down to roughly 8,000 big emitters, each with annual CO2 emissions larger than 0.1 Mt CO2/year. Electrical power production, with roughly 5,000 large power plants having emissions of more than 0.1 Mt CO2/year, has a share of around 45% of the emissions worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abanades, J. C., Anthony, E. J., Lu, D. Y., Salvador, C. and Alvarez, D. (2004). Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE Journal 50(7): 1614–1622.

    Article  Google Scholar 

  • Abanades, J. C., Anthony, E. J., Wang, J. S. and Oakey, J. E. (2005). Fluidized bed combustion systems integrating CO2 capture with CaO. Environmental Science & Technology 39(8): 2861–2866.

    Article  Google Scholar 

  • Anthony, E. J. (2008). Solid looping cycles: a new technology for coal conversion. Industrial & Engineering Chemistry Research 47(6): 1747–1754.

    Article  Google Scholar 

  • Bale, C. W., Chartrand, P., Degterov, S. A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melançon, J., Pelton, A. D. and Petersen, S. (2002). FactSage thermochemical software and databases. Calphad 26(2): 189–228.

    Article  Google Scholar 

  • Becher, V., Goanta, A., Gleis, S. and Spliethoff, H. (2007). Controlled staging with non-stoichiometric burners for oxyfuel processes. Proceedings of the 32nd International Technical Conference on Coal Utilization & Fuel Systems. 10–15 July, Clearwater, FL.

    Google Scholar 

  • Berguerand, N. and Lyngfelt, A. (2008). Design and operation of a 10 kW(th) chemical-looping combustor for solid fuels – testing with South African coal. Fuel 87(12): 2713–2726.

    Article  Google Scholar 

  • Blokh, A. G. and Viskanta, R. (1988). Heat transfer in steam boiler furnaces. Washington, DC, Hemisphere Publishing Corporation.

    Google Scholar 

  • Burchardt, U. and Radunsky, D. (2007). Erfahrungen aus der Planung und Genehmigung der Oxyfuel-Forschungsanlage von Vattenfall. 39. Kraftwerkstechnisches Kolloquium, 11–12 Oktober 2007, Vortrag V 18, Dresden.

    Google Scholar 

  • Burchhardt, U. and Jacoby, J. (2008). Erfahrungen aus der Inbetriebnahme und erste Eregbnisse der Oxyfuel-Forschungsanlage von Vattenfall. 40. Kraftwerkstechnisches Kolloquium, Dresden.

    Google Scholar 

  • Cao, Y., Casenas, B. and Pan, W. P. (2006). Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier. Energy & Fuels 20(5): 1845–1854.

    Article  Google Scholar 

  • Davidson, R. M. (2007). Post-combustion carbon capture from coal fired plants – solvent scrubbing. London, IEA Coal Research, CCC/125.

    Google Scholar 

  • DoE (2005). International energy outlook, energy information administration, Department of energy, from www.eia.doe.gov/oiaf/ieo/index.html.

  • ENCAP (2009). Public summary reports. Retrieved 20th May 2009, from http:// www.encapco2.org/publicsumreports.htm.

  • Ewers, J. and Renzenbrink, W. (2005). Bestandsaufnahme und Einordnung der verschiedenen Technologien zur CO2-Minderung. VGB PowerTech 85(4): 46–51.

    Google Scholar 

  • Göttlicher, G. (1999). Energetik der Kohlendioxidrückhaltung in Kraftwerken. VDI-Fortschrittberichte, Reihe 6 Energietechnik Nr. 421. Düsseldorf, VDI Verlag.

    Google Scholar 

  • Gupta, R., Khare, S., Wall, T. F., Eriksson, K., Lundstrom, D. and Eriksson, J. (2006). Adaptation of gas emissivity models for CFD based radiative transfer in large air-fired and oxy-fired furnaces. 31. International Technical Conference on Coal Utilization and Fuel Systems. Clearwater, FL Coal Technology Association.

    Google Scholar 

  • Hellfritsch, S., Gilli, P. G. and Jentsch, N. (2004). Concept for a lignite-fired power plant based on the optimised oyxfuel process with CO2 recovery. VGB Powertech 84(8): 76–82.

    Google Scholar 

  • Hellfritsch, S., Kluger, F. and Bergins, C. (2007). Studie eines braunkohlegefeuerten Oxyfuel-Dampferzeugers. 39. Kraftwerkstechnisches Kolloquium, 11–12 Oktober 2007, Vortrag V 21, Dresden.

    Google Scholar 

  • IEA (2002). World energy outlook 2002. Paris, IEA.

    Google Scholar 

  • IEA (2006). World energy outlook 2006. Paris, IEA.

    Google Scholar 

  • IPCC (2005). IPCC special report on carbon dioxide capture and storage. Working Group Technical Unit, Intergovernmental Panel on Climate Change. Cambridge [u.a.], Cambridge University Press.

    Google Scholar 

  • Kakaras, E., Koumanakos, A., Doukelis, A., Giannakopoulos, D. and Vorrias, I. (2007). Oxyfuel boiler design in a lignite-fired power plant. Fuel 86: 2144–2150.

    Article  Google Scholar 

  • Kather, A., Klostermann, M. and Hermsdorf, C. (2007a). Steinkohlekraftwerke mit CO2-Abtrennung auf Basis des Oxyfuel-Prozesses. 39. Kraftwerkstechnisches Kolloquium. 11–12 Oktober 2007, Dresden.

    Google Scholar 

  • Kather, A., Hermsdorf, C. and Klostermann, M. (2007b). Der kohlebefeuerte Oxyfuel-Prozess. VGB PowerTech 87: 84–91.

    Google Scholar 

  • Kluger, F., Lysk, S., Altmann, H. and Krohmer, B. (2006). 30 MWth Oxyfuel-Pilotanlage – Untersuchungsschwerpunkte und Auslegung des Dampferzeugers. 38. Kraftwerkstechnisches Kolloquium. 24–25 Oktober 2006, Vortrag V 7.5, Dresden.

    Google Scholar 

  • Kretzschmar, H.-J., Stöcker, I., Jähne, I., Knobloch, K., Kleemann, L. and Seibt, D. (2005). Software for the calculation of the properties of humid gas mixtures. Zittau, Germany, University of Applied Sciences of Zittau and Görlitz.

    Google Scholar 

  • Leion, H., Mattisson, T. and Lyngfelt, A. (2008). Solid fuels in chemical-looping combustion. International Journal of Greenhouse Gas Control 2(2): 180–193.

    Article  Google Scholar 

  • Linßen, J., Markewitz, P., Martinsen, D. and Walbeck, M. (2006). Zukünftige Energieversorgung unter den Rahmenbedingungen einer großtechnischen CO2-Abscheidung und Speicherung. Abschlussbericht des FKZ 0326889.

    Google Scholar 

  • Lyngfelt, A., Leckner, B. and Mattisson, T. (2001). A fluidised-bed combustion process with inherent CO2 separation: Application of chemical looping combustion. Chemical Engineering Science 56: 3101–3113.

    Article  Google Scholar 

  • Maier, J., Dhungel, B., Mönckert, P. and Scheffknecht, G. (2007). Combustion and emission behaviour under oxyfuel conditions. 39. Kraftwerkstechnisches Kolloquium. 11–12 Oktober 2007, Vortrag V 20, Dresden.

    Google Scholar 

  • Mattisson, T., Lyngfelt, A. and Leion, H. (2009). Chemical-looping with oxygen uncoupling for combustion of solid fuels. International Journal of Greenhouse Gas Control 3(1): 11–19.

    Article  Google Scholar 

  • Pruschek, R. (2002). Elektrizitätserzeugung aus fossilen Brennstoffen in Kraftwerken. In: E. Rebhan (ed.) Energiehandbuch: Gewinnung, Wandlung und Nutzung von Energie. Berlin, Springer.

    Google Scholar 

  • Pruschek, R. and Oeljeklaus, G: (1992). CO2-Rückhaltung und CO2-Entsorgung Düsseldorf, VDI-Berichte Nr. 1016, pp. 103–124.

    Google Scholar 

  • Radgen, P., Cremer, C., Warkentin, S., Gerling, P., May, F. and Knopf, S. (2005). Bewertung von Verfahren zur CO2-Abscheidung und -Deponierung Fraunhofer Institut für Systemtechnik und Innovationsforschung (ISI), Karlsruhe und Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, März 2005, Abschlußbericht F+E-Vorhaben Nr. 203 41 110 des Umweltbundesamtes.

    Google Scholar 

  • Ritter, R., Holling, B., Altmann, H. and Biele, M. (2007). Konzepte und Ausblick für eine CO2-Anlage eines Oxyfuel-Kraftwerkes am Beispiel Schwarze Pumpe. 39. Kraftwerkstechnisches Kolloquium, Dresden.

    Google Scholar 

  • Ryden, M., Lyngfelt, A. and Mattisson, T. (2008). Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers. Energy & Fuels 22(4): 2585–2597.

    Article  Google Scholar 

  • Scheffknecht, G. and Maier, J. (2008). Firing issues related to the oxyfuel process. VGB Power Tech 88(11): 91–97.

    Google Scholar 

  • Seifritz, W. (1989). Über die Möglichkeiten einer CO2-Entsorgung. VDI-Berichte Nr. 809, pp. 223–245. Düsseldorf.

    Google Scholar 

  • Sivalingam, S., Gleis, S., Hartmut, S., Yrjas, P. and Hupa, M. (2009). Cyclic carbonation calcination studies of limestone and dolomite for CO2 separation from combustion flue gases. Journal of Engineering for Gas Turbines and Power 131 (1): 011801–011808.

    Article  Google Scholar 

  • Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M. and Tejima, K. (1999). A twin fluid-bed reactor for removal of CO2 from combustion processes. Chemical Engineering Research & Design 77(A1): 62–68.

    Google Scholar 

  • Smith, I. M. and Thambimuthu, K. V. (1991). Greenhouse Gases, Abatement and Control: the role of coal. IEACR/39. London, IEA Coal Research.

    Google Scholar 

  • Spliethoff, H. (2006). Advanced steam generator concepts for oxy-fuel processes. Advances in New and Sustainable Energy Conversion and Storage Technologies, IUC Conference. pp. 23–25 September, Grand Hotel Park, Dubrovnik, Croatia.

    Google Scholar 

  • Tan, R., Corragio, G. and Santos, S. (2005). Technology review – Oxy-coal combustion with flue gas recycle for the power generation industry. International Flame Research Foundation. Report-No. 23/y/1. Velsen, NL.

    Google Scholar 

  • Tan, R. and Santos, S. (2006). Technology review – Chemical looping combustion for fossil fuel utilisation with carbon sequestration. Report-No. G 23/y/2. Velsen, NL, IFRF.

    Google Scholar 

  • VGB (2002). CO2 Capture and Storage. VGB report on the state of the art. Essen, VGB Powertech.

    Google Scholar 

  • Wall, T. F. (2007). Combustion processes for carbon capture. Proceedings of the Combustion Institute 31(1): 31–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Spliethoff .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spliethoff, H. (2010). Carbon Capture and Storage (CCS). In: Power Generation from Solid Fuels. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02856-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02856-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02855-7

  • Online ISBN: 978-3-642-02856-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics