Skip to main content

Coal-Fuelled Combined Cycle Power Plants

  • Chapter
  • First Online:
Power Generation from Solid Fuels

Part of the book series: Power Systems ((POWSYS))

Abstract

Combined cycle power plant, when used as a generic term, refers to a plant which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion turn solid fuels into a fuel gas or a hot pressurised gas which is then used in the gas and steam turbine processes. Coal-fuelled combined cycle plants will be discussed in detail in the following sections. A start will be made by describing the basic technical features and the characteristic data of combined cycle power plants fuelled by natural gas for the purposes of comparison to coal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho, M., Hernberg, R. and Häyrinen, V. (1995). Fuel reactivity and release of pollutants and alkali vapours in pressurized combustion for combined cycle power generation. Final Report, Contract JOU2-CT92-0037.

    Google Scholar 

  • Almhem, P. (1996). PFBC-Heizkraftwerk Cottbus, Wirbelschicht-Kombi-Anlage für Trockenbraunkohle. VDI-GET Tagung “Entwicklungslinien der Energie- und Kraftwerkstechnik”. Siegen.

    Google Scholar 

  • Aquaro, D. and Pieve, M. (2007). High temperature heat exchangers for power plants: performance of advanced metallic recuperators. Applied Thermal Engineering 27(2–3): 389–400.

    Google Scholar 

  • Aravind, P. V. (2007). Studies on High Efficiency Energy Systems Based on Biomass Gasifiers and Solid Oxide Fuel Cells with Ni/GDC Anodes. Delft, TU Delft. Ph.D.

    Google Scholar 

  • Asai, A., Izaki, K., Egami, Y., Tsuji, K., Kumagai, S. and Nishijima, Y. (2004). System outline and operational status of Karita Power Station New Unit 1 (PFBC). JSME International Journal Series B-Fluids and Thermal Engineering 47(2): 193–199.

    Google Scholar 

  • Atimay, A. T. (2001). Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas. Clean Products and Processes 2: 197–208.

    Google Scholar 

  • Bammert, K. (1986). Operating experience and measurements on turbo sets of CCGT-cogeneration plants in Germany. International Gas Turbine Conference, Düsseldorf, ASME-Paper 86-GT-101.

    Google Scholar 

  • Bannister, R. L., Newby, R. A. and Diehl, R. C. (1992). Development of a direct coal fired combined cycle. Mechanical Engineering 114(12): 64–70.

    Google Scholar 

  • Bannister, R. L., Pillsbury, P. W., Diehl, R. C. and Loftus, P. J. (1990). Recent test results in the direct coal fired 80 MW combustion turbine program. International Gas Turbine and Aeroengine Congress, Brussels, ASME-Paper 90-GT-58.

    Google Scholar 

  • Bauer, D. A. and Marocco, M. (1995). Tidd PFBC demonstration plant, summary of operations. Book 3, Part C, Vol. 2, pp. 109–121, Anaheim, USA, Power Gen 95 Americas.

    Google Scholar 

  • Bauer, F., Meier, H. J., Smuda, J. V. and Stuhlmüller, F. (1994). PFBC Development for Lignite Fired CC Power Plants. Power-Gen Europe, Köln, Band III, pp. 101–120.

    Google Scholar 

  • Baum, J. (2001). Untersuchungen zum extern befeuerten Gasturbinenprozeß mit Hochtemperaturwärmeübertrager. VDI Fortschritt-Berichte Reihe 6 Energietechnik, Nr. 456. Düsseldorf, VDI.

    Google Scholar 

  • Benson, S. (2000). Ceramics for advanced power generation. London, IEA Coal Research, CCC/37.

    Google Scholar 

  • Bliem, C. et al. (1985). Ceramic heat exchanger concepts and materials technology. Park Ridge, NJ, Noyes.

    Google Scholar 

  • Böhm, H. (1994). Fossilbefeuerte Kraftwerke. Stand, Entwicklungstendenzen. VGB Kraftwerkstechnik 74(3): 173–186.

    Google Scholar 

  • Bohn, D. (2005). Technologien für Gasturbinen der übernächsten Generation. VGB PowerTech 85(7): 65–71.

    Google Scholar 

  • Bohn, D. (2007). Improved cooling concept for turbine blades of high-temperature gas turbines. VGB PowerTech 87(10): 96–103.

    Google Scholar 

  • Bonn, B. (1996). On-line Messung von Alkalidampf-Konzentrationen in heißen Rauchgasen. BMBF-Statusseminar Heißgasreinigung. Karlsruhe.

    Google Scholar 

  • Bunthoff, D. and Meier, H. J. (1987). Umweltfreundliches Kraftwerk mit Druckwirbelschichtfeuerung, Planungskriterien für die Dampferzeuger. VGB Kraftwerkstechnik 67(8): 751–757.

    Google Scholar 

  • Bunthoff, D., Rehwinkel, H. and von Wedel, G. (1990). Druckwirbelschichtfeuerung: Fortschrittliche Konzepte und aktueller Entwicklungsstand. Technische Mitteilungen 83(1): 25–32.

    Google Scholar 

  • Chalupnik, R. W., Krautz, H. J., Wirtz, M. and Stuhlmüller, F. (2001). Applied research for a new generation of lignite-fired combined cycle power plants using circulating pressurized fluidized bed combustion. Proceedings of the 16th International Conference on Fluidized Bed Combustion. May 13–16, Reno, NV.

    Google Scholar 

  • Coca, M. (2003). Integrated gasification combined cycle technology – Its actual application in Spain: ELCOGAS- Puertollano. From http://www.elcogas.es/en_home_set.htm

  • Coombs, M., Kotchick, D. and Waren, H (1979). High-temperature ceramic heat exchanger. Final report EPRI-EP-1127, July 1979. Torrance, CA, AiResearch Mfg. Co.

    Google Scholar 

  • COORETEC (2003). Forschungs– und Entwicklungskonzept für emissionsarme fossil befeuerte Kraftwerke – Bericht der COORETEC-Arbeitsgruppen. Bundesministerium für Wirtschaft und Arbeit, December 2003, ISSN 0342-9288 (BMWA-Dokumentation), From http://www.bmwa.bund.de.

  • Cortes, J. C. (1999). Puertollano IGCC; operation status. Gasification Technologies Conference. October 12–20, San Francisco CA.

    Google Scholar 

  • Cowell, L. H. and LeCren, R. T. (1992). Experimental evaluation of a two stage slagging combustor design for a coal-fueled industrial gas turbine. International Gas Turbine and Aeroengine Congress. Cologne, ASME-Paper 92-GT-259.

    Google Scholar 

  • Cowell, L. H., Hasen, A. M., LeCren, R. T. and Stephenson, M. D. (1992a). Coal fueled two-stage slagging combustion island and cleanup system for gas turbine application. International Gas Turbine and Aeroengine Congress. Brussels, ASME-Paper 90-GT-59.

    Google Scholar 

  • Cowell, L. H., LeCren, R. T. and Tenbrook, C. E. (1992b). Two-Stage Slagging Combustor Design for a Coal-Fueled Industrial Gas Turbine. Journal of Engineering for Gas Turbines and Power 114(4): 359–366.

    Google Scholar 

  • Daijou, Y., Suzuki, K., Ishinomori, T., Shigeta, J., Yanagisawa, T. and Tsumita, Y. (1997). Alkali-vapor measurements in the Wakamatsu PFBC plant. Proceedings of the 14th International Conference on Fluidized Bed Combustion. Vancouver, Canada.

    Google Scholar 

  • Dibelius, G. and Pitt, R. (1989). Gasturbinenkonzepte für Druckwirbelschichtanlagen – Konzepte, Auslegung, Betriebsverhalten. VDI-Berichte 715: 213–236.

    Google Scholar 

  • DOE (1997). Clean coal technology demonstration program. Washington, DC, October.

    Google Scholar 

  • DOE (2003a). Clean coal technology program, McIntosh Unit 4A PCFB Demonstration Project.

    Google Scholar 

  • DOE (2003b). Clean coal technology program, McIntosh Unit 4B Topped PCFB Demonstration Project.

    Google Scholar 

  • Edelmann, H. and Stuhlmüller, F. (1997). EFCC – Ein zukünftiges Konzept für Kohle-Kombikraftwerke. VGB Kraftwerkstechnik 77(7): 537–543.

    Google Scholar 

  • Emsperger, W. and Brückner, H. (1986). Kombiprozesse mit atmosphärischen und druckbetriebenen Wirbelschichtsystemen. VDI-Berichte Nr 601: 257–272.

    Google Scholar 

  • Escobar, I. and Muller, M. (2007). Alkali removal at about 1400 degrees C for the pressurized pulverized coal combustion combined cycle. 2. Sorbents and sorption mechanisms. Energy & Fuels 21(2): 735–743.

    Google Scholar 

  • Escobar, I., Oleschko, H., Wolf, K.-J. and Muller, M. (2008). Alkali removal from hot flue gas by solid sorbents in pressurized pulverized coal combustion. Powder Technology 180(1–2): 51–56.

    Google Scholar 

  • Eurlings, J. and Ploeg, J. (1999). Process performance of the SCGP at Buggenum IGCC. Gasification Technologies Conference. October 18–20, San Francisco, CA.

    Google Scholar 

  • Fichtner (1992). Der Kombiprozeß mit indirekt kohlegefeuerter Gasturbine. Abschlußbericht, BMFT-Förderkennzeichen 0326746, September.

    Google Scholar 

  • Florin, N. H. and Harris, A. T. (2008). Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chemical Engineering Science 63(2): 287–316.

    Google Scholar 

  • Folke, C. (2006). Kohlvergasung – Option zur CO2-Abtrennung. Kraftwerkstechnisches Kolloquium Dresden 2006. Vortrag V7.10.

    Google Scholar 

  • Förster, M., Hannes, K. and Telöken, R. (2001). Combined cycle power plant with Pressurized Coal Combustion (PPCC): State of development and perspectives. VGB PowerTech 81(9): 30–35.

    Google Scholar 

  • Förster, M., Neumann, F., Telöken, R. and Pavone, D. (2005). Druckkohlenstaubfeuerung: Aktueller Fortschritt des kohlebasierten GuD-Prozesses in Richtung Gasturbinenverträglichkeit und Stand des Entwicklungsprojektes. VGB PowerTech 85(6): 38–41.

    Google Scholar 

  • FutureGen (2007). Initial conceptual design report. 2009, from http://www.futuregenalliance.org/publications.stm.

  • Geosits, R. F. and Schmoe, L. A. (2005). IGCC – The challenges of integration. ASME Turbo Expo 2005: Power for Land, Sea and Air, June 6–9, 2005, Reno-Tahoe, NV. Paper GT2005-68997.

    Google Scholar 

  • Gockel, B. (1994). Ein mathematisches Modell zur Berechnung der Kohlenstaubverbrennung unter Berücksichtigung höherer Drücke. Dissertation Universität Bochum.

    Google Scholar 

  • Goto, H. (1995). Operation experience from the 71 MW Wakamatsu PFBC demonstration plant. Proceedings of the 13th International Conference on Fluidized Bed Combustion. Orlando, FL. 2: 911–918.

    Google Scholar 

  • Gottwald, U., Monkhouse, P. and Bonn, B. (2001). Dependence of alkali emissions in PFB combustion on coal composition. Fuel 80(13): 1893–1899.

    Google Scholar 

  • Groll, M. (1980). Grundlagen und Anwendungen des Wärmerohres. Naturwissenschaften 67: 72–79.

    Google Scholar 

  • Hannemann, F. et al. (2003). Pushing forward IGCC technology at Siemens. Gasification Technologies 2003. 13 October 2003, San Francisco, CA.

    Google Scholar 

  • Hannes, K. (1986). Kohlenstaub-Druckverbrennung. Entwicklungsstand und Anforderungen des Prozesses an die Verbrennungsführung VGB-Kraftwerkstechnik 77(5): 393–400.

    Google Scholar 

  • Hannes, K. (1996). Entwicklungsprogramm Druckkohlenstaubfeuerung. BMBF-Statusseminar Heißgasreinigung. Karlsruhe.

    Google Scholar 

  • Hannes, K. W. (2002). Kohle-Kombi-Kraftwerke mit Druckkohlenstaubfeuerung: Das Druckflamm-Forschungsprogramm. VGB PowerTech 82(8): 56–60.

    Google Scholar 

  • Hannes, K. W., Reichert, G. and Weber, E. (1989). Pressurized pulverized coal combustion with molten ash removal. Conference on Technologies for Producing Electricity in the 21st Century. San Francisco, USA.

    Google Scholar 

  • Harkins, B. D. and Ward, M. E. (1989). Preliminary design of a high pressure, high temperature ceramic air heat exchanger. In: Waste heat utilization, the winter annual meeting of the ASME. San Francisco, CA, December 10–15, Band HTD-118, pp. 51–61.

    Google Scholar 

  • Haupt, G., Zimmermann, G., Baumann, H.-R., Ullrich, N., Pruschek, R. and Oeljeklaus, G. (1998). New design of IGGCC for competitive power generation. Gasification Technologies Conference. October 4–7, San Francisco, CA.

    Google Scholar 

  • Higman, C. (2005). The reliability of integrated gasification combined cycle (IGCC) power generation units. Gasification Technologies Conference. San Francisco, CA.

    Google Scholar 

  • Higman, C. and van der Burgt, M. (2008). Gasification. Amsterdam [u.a.], Elsevier/GPP, Gulf Professional Publishing.

    Google Scholar 

  • Hippinen, I., Jahkola, A. and Lu, Y. (1991). Pressurized fluidized bed combustion of different type of solid fuels. Proceedings of the 11th International Conference on Fluidized Bed Combustion. Montreal, ASME.

    Google Scholar 

  • Hoberg, H. and Gudenau, H. W. (1998). Heißgasreinigung für Kombiprozesse mit Druckkohlenstaubfeuerung. VGB-Konferenz Forschung in der Kraftwerkstechnik. Essen.

    Google Scholar 

  • Hokari, N., Miyamoto, T., Ito, O., Mizumoto, M., Tomuro, J., Iwase, T., Yoshioka, S. and Ootani, Y. (2001). Sulfur dioxide removal performance of 250 MW PFBC at Osaki. Proceedings of the 16th International Conference on Fluidized Bed Combustion. May 13–16, Reno, NV.

    Google Scholar 

  • Holt, N. A. H. (2003). Operating experience and improvement opportunities for coal-based IGCC plants. Materials at High Temperatures 20(1): 1–6.

    MathSciNet  Google Scholar 

  • Hübner, K., Miao, J. and Görner, K. (2003). Untersuchungen zur Alkalisorption mit Unterstützung elektrischer Felder bei extremen Temperaturen oberhalb von 1300°C. 21. Deutscher Flammentag, Cottbus, VDI.

    Google Scholar 

  • Hübner, K., Pavone, D., Schmidt, D. and Weber, E. (1988). Möglichkeiten der Gasreinigung im Temperaturbereich oberhalb von 1000°C. VGB Kraftwerkstechnik 68(9): 931–935.

    Google Scholar 

  • Hurley, J. P., Seery, D. J. and Robson, F. L. (2003). Experience with an ODS high-temperature heat exchanger in a pilot-scale HiPPS plant. Materials at High Temperatures 20(1): 39–44.

    Google Scholar 

  • Huth, M., Vortmeyer, N., Schetter, B. and Karg, J. (1998). Verbrennung von Synthesegas in Gasturbinen. BWK 50(9): 35–39.

    Google Scholar 

  • Jahraus, B. and Dieckmann, R. (1989). Der Kombiprozeß mit indirekt gefeuerter Gasturbine. VDI-Berichte 1182: 287–300.

    Google Scholar 

  • Jansson, S.A. (1995a). ABB‘s PFBC technology operation experience and standard products. EPRI Conference on New Power Generation Technology. San Francisco, CA.

    Google Scholar 

  • Jansson, S. A. (1995b).PFBC – clean coal technology – status and experience. Power-Gen Europe ’95. Amsterdam, The Netherlands. 4: 97–109.

    Google Scholar 

  • Jansson, S. A. (1996). Gas turbine tolerance to particulates and chemical constituents. BMBF Statusseminar “Heißgasreinigung in der Kraftwerkstechnik”. Germany, Karlsruhe.

    Google Scholar 

  • Jansson, S. A. and Svensson, J.-A. (1997). Experiences from the IEA hotgas filter testing project. Proceedings of the 14th International Conference on Fluidized Bed Combustion. Vancouver, Canada.

    Google Scholar 

  • Jansson, S. and Anderson, J. (1999). Progress of ABB’s PFBC projects. Proceedings of the 15th International Conference on Fluidized Bed Combustion. May 16–19, Savannah, GA.

    Google Scholar 

  • Jansson, S., Kemmer, L. and Flodin, E. (1996). Pressurized fluidized bed power plants. Energy Conference. Haifa.

    Google Scholar 

  • JBDT (1992). Jahrbuch der Dampferzeugertechnik, 7. Ausgabe, Essen Vulkan.

    Google Scholar 

  • Jopp, K. (2005). Neue Maßstäbe im GuD-Prozess. BWK 67(6): 52–54.

    Google Scholar 

  • Jüntgen, H. and van Heek, K. H. (1981). Kohlevergasung – Grundlagen und Technische Anwendung. München, Verlag Karl Thiemig.

    Google Scholar 

  • Kail, C. and Rukes, B. (1995). Fortschrittliche Gas- und Dampfturbinenprozesse zur Wirkungsgrad- und Leistungssteigerung bei GuD-Kraftwerken. VDI-Berichte 1182: 71–87.

    Google Scholar 

  • Kainer, H. (1988). Keramische Wärmetauscher. In: Technische Keramik. pp. 325–333 Essen, Vulkan.

    Google Scholar 

  • Kainer, H. and Willmann, G. (1987). Komponenten für den Bau keramischer Rekuperatoren – Möglichkeiten und Beschränkungen. Gas Wärme International 36(6): 332–340.

    Google Scholar 

  • Käser, J. (1996). Alkali Release under PFBC Conditions. Diplomarbeit, Institut für Verfahrenstechnik und Dampfkesselwesen, Universität Stuttgart und ABB Carbon.

    Google Scholar 

  • Keller, C. (1946). The Escher Wyss-AK closed-cycle turbine, its actual development and future prospects. Transactions of the ASME 68: 791–822.

    Google Scholar 

  • Keller, C. and Gaehler, W. (1961). The coal burning closed-cycle gas turbine. Gas Turbine Power Conference. ASME-Paper 61-GTP-2, Washington, DC

    Google Scholar 

  • Keppel, W. (1995). Die Gasturbine als Schlüsselkomponente in der modernen Kraftwerkstechnik. VDI-Berichte 1182: pp. 1–25.

    Google Scholar 

  • Klara, J. M. (1994a). High performance power systems for the near-term and beyond. International Gas Turbine and Aeroengine Congress and Exposition. Netherlands, ASME-Paper 94-GT-315.

    Google Scholar 

  • Klara, J. M. (1994b). HIPPS can compete with conventional PC systems. Part II. Power Engineering 98: pp. 33–36.

    Google Scholar 

  • Kloster, R. (1999). Thermodynamische Analyse und Optimierung von Gas-/Dampfturbinen-Kombi-Kraftwerke mit integrierter Kohlevergasung, VDI-Fortschritt-Berichte Reihe 6, Nr. 409 Dissertation Universität Essen.

    Google Scholar 

  • Koike, J., Nakamura, S., Watanabe, H. and Imaizumi, T. (2003). Manufacturing and construction, operation of Karita 360 MW unit. Proceedings of the 17th International Fluidized Bed Combustion Conference. May 18–21, 2003, Jacksonville, FL.

    Google Scholar 

  • Korens, N., Simbeck, D. R. and Wilhelm, D. J. (2002). Process screening analysis of alternative gas treating and sulfur removal for gasification. Pittsburgh, CA USDOE.

    Google Scholar 

  • Kuhn, S. (2007). Funktions- und Betriebssicherheit eines druckaufgeladenen Wirbelschichtvergasers. Doctoral thesis, Technische Universität München, München.

    Google Scholar 

  • Kuhnle, J., Wolf, H., Maile, K., Kußmaul, K., Baum, J., Spliethoff, H. and Hein, K. R. G. (1997). Untersuchungen zum Einsatz und zur Entwicklung eines Hochtemperaturwärmetauschers in Kohlenstaubfeuerungen. Abschlussbericht, Stiftung Energieforschung Baden-Württemberg, Förderkennzeichen A 000 4793/4893.

    Google Scholar 

  • LaHaye, P. G. and Bary, M. R. (1994). Effective means of rejuvenation for older coal-fired stations. International Gas Turbine and Aeroengine Congress and Exposition. The Hague/The Netherlands, ASME-Paper 94-GT-483.

    Google Scholar 

  • LaHaye, P. G. and Feldmann, B. E. (1986). Externally fired gas turbine/combined cycle. International Coal Utilization Conference and Exhibition. Pittsburgh, CA.

    Google Scholar 

  • LaHaye, P. G., Briggs, G. F., Mazer, J. M. and Seger, J. L. (1990). Results of preliminary coal-fired tests on high pressure ceramic air heater for indirectly-fired gas turbine applications. Proceedings of the 7th Annual Coal-fueled Heat Engines and Gas Stream Center (METC).

    Google Scholar 

  • LaHaye, P. G. and Zabolotny, E. (1989). Externally-fired combined cycle. ASME Cogen-Turbo Meeting. Nice, France.

    Google Scholar 

  • Lako, P. (2004). ‘Coal-fired power technologies.’ Coal-fired power options on the brink of climate policies. ECN-C–04-076, October 2004.

    Google Scholar 

  • Lambertz, J. and Ewers, J. (2006). Clean coal power – Die Antwort der Kraftwerkstechnik auf die Herausforderungen der Klimavorsorge. VGB PowerTech 86(5): 71–77.

    Google Scholar 

  • Landfermann, H. and Hausner, H. (1988). Keramische Werkstoffe – Übersicht, Herstellung – Eigenschaften – Anwendungen. In: Technische Keramik. Essen, Vulkan, pp. 11–15.

    Google Scholar 

  • Lee, S. H. D. and Carls, K. M. (1990). Measurement of sodium and potassium vapours in pressurized-bed combustion of Beluah lignite. Journal of the Institute of Energy 66(12): 203–210.

    Google Scholar 

  • Lee, S. H. D. and Swift, W. M. (1991). A fixed granular-bed sorber for measurement and control of alkali vapors in PFBC. 11th International Conference on Fluidized Bed Combustion. pp. 1095–1103 Montreal, ASME.

    Google Scholar 

  • Leufert, J. (1993). Abschlußbericht Verbundprojekt Druckkohlenstaubfeuerung, Phase I, Forschungsteilbereich Kohleumwandlungssystem. BMBF-Förderkennzeichen FKZ 03266.

    Google Scholar 

  • Mann, M. D. and Ludlow, D. K. (1997). Capture of alkali during pressurized fluidized-bed combustion using in-bed sorbents. Proceedings of the 14th International Conference on Fluidized Bed Combustion. Vancouver, Canada, ASME.

    Google Scholar 

  • Martinez Crespo, P. and Menedez Perez, J. A. E. (1995). Operating experiences at the escatron pressurized fluid bed combustion demonstration plant. Power-Europe, Amsterdam, The Netherlands, Vol. 4, pp. 113–130.

    Google Scholar 

  • Maurstad, O. (2005). An overview of coal based integrated gasification combined cycle (IGCC) technology, from http://lfee.mit.edu/publications.

  • McMullan, J. (2004). Fossil fuel power generation, State of the art. Power Clean Network.

    Google Scholar 

  • Mendez-Vigo, I., Schellberg, W. and Karg, J. (1998). The Puertollano IGCC plant: status update. Gasification Technologies Conference. October 4–7, San Francisco, CA.

    Google Scholar 

  • Minchener, A. J. (2005). Coal gasification for advanced power generation. Fuel 84: 2222–2235.

    Google Scholar 

  • Mitchell, S. (1997). Hot gas particulate filtration. London, IEA Clean Coal Centre, IEACR/95.

    Google Scholar 

  • Moersch, O., Nagel, H., Spliethoff, H. and Hein K. R. G. (1999). Influence of various operating conditions on advanced PFBC with staged combustion. Proceedings of the 15th International Conference on Fluidized Bed Combustion. May 16–19, Savannah, GA.

    Google Scholar 

  • Mojtahedi, W. and Backman, R. (1989). The fate of sodium and potassium in the pressurized fluidized-bed combustion and gasification of peat. Journal of the Institute of Energy, December, 189–196, from http://www.ingentaconnect.com/content/maney/eni.

  • Monkhouse, P. (2002). On-line diagnostic methods for metal species in industrial process gas. Progress in Energy and Combustion Science 28(4): 331–381.

    Google Scholar 

  • Monkhouse, P. B., Gottwald, U. A., Davidsson, K. O., Lonn, B., Engvall, K. and Pettersson, J. B. C. (2003). Phase discrimination of alkali species in PCFB combustion flue gas using simultaneous monitoring by surface ionisation and photofragmentation fluorescence*. Fuel 82(4): 365–371.

    Google Scholar 

  • Müller, M. (2008). Freisetzung und Einbindung von Alkalimetallverbindungen in zukünftigen, kohlebefeuerten Kombikraftwerken, RWTH Aachen. Habilitation.

    Google Scholar 

  • Müller, M., Förster, M. and Pavone, D. (2008). Enforced binding of alkali metals into liquid slags by weak electrical fields. Proceedings of the 7th International Symposium on Gas Cleaning at High Temperatures. Shoal Bay, Australia.

    Google Scholar 

  • Müller, M., Pavone, D. and Abraham, R. (2009). Hot fuel gas cleaning in IGCC at gasification temperature. Proceedings of the 4th International Conference on Clean Coal Technologies for our Future (CCT). Dresden.

    Google Scholar 

  • Mustonen, J. P., Bossart, S. J. and Durner, M. W. (1991). Technical and economic analysis of advanced particle filters for PFBC applications. Proceedings of the 11th International Conference on Fluidized Bed Combustion. Montreal, ASME.

    Google Scholar 

  • Nagel, H. (2002). Untersuchungen zum Emissionsverhalten und Wirkungsgradpotential von Druckwirbelschichtfeuerungen der ersten und zweiten Generation. Düsseldorf, VDI.

    Google Scholar 

  • Nagel, H., Spliethoff, H. and Hein, K. R. G. (1998). Untersuchungen zum Einfluß des Hybridkonzeptes auf den Betrieb einer Druckwirbelschichtfeuerung. Proceedings of the 10th International VGB-Konferenz Forschung in der Kraftwerkstechnik. Essen.

    Google Scholar 

  • NETL (2007). Gasification database, from http://www.netl.doe.gov/technologies/coalpower/gasification/database/database.html.

  • Neumann, F., Hannes, K., Wirtz, S. and Kremer, H. (1996). Untersuchungen zur Auslegung eines Hochtemperaturwärmetauschers für die Integration in einem kombinierten Gas- und Dampfturbinenprozeß mit druckaufgeladener Kohlenstaubfeuerung. VDI-Berichte Nr 1280: 473–498.

    Google Scholar 

  • Newby, R. A., Lippert, T., Alvin, M. A., Bruck, G. J., Sanjana, Z. N. and Smeltzer, E. E. (2001). Hot gas filter status and innovations for PFBC. Proceedings of the 16th International Conference on Fluidized Bed Combustion. May 13–16, Reno, NV.

    Google Scholar 

  • Newby, R. A., Lippert, T., Bruck, G. J., Alvin, M. A. and Smeltzer, E. E. (1999). Development of advanced hot gas ceramic filter systems. Proceedings of the 15th International Conference on Fluidized Bed Combustion. May 16–19, Savannah, GA.

    Google Scholar 

  • Ogriseck, K. and Meyer, B. (2005). Erzeugung wasserstoffreicher Brennstoffe in IGCC-Kraftwerksprozessen für eine CO2-arme Braunkohlenutzung. VGB Powertech 85(11): 54–59.

    Google Scholar 

  • Oleschko, H. and Muller, M. (2007). Influence of coal composition and operating conditions on the release of alkali species during combustion of hard coal. Energy & Fuels 21: 3240–3248.

    Google Scholar 

  • Parsons, E. L. and Byam, J. W. (1989). Overview of gas turbine coal-fired combustor concepts. Gas Turbine and Aeroengine Congress. Toronto, ASME-Paper 89-GT-252.

    Google Scholar 

  • Pietsch, A. (1978). Coal fired prototype high temperature continuous flow heat exchanger AF-684 research project 545-1. Final report, Feb 1978. Phoenix, AZ, AiResearch Mfg. Co. of Arizona.

    Google Scholar 

  • Pillsbury, P. W., Bannister, R. L., Diehl, R. C. and Loftus, P. J. (1989). Direct coal firing for large combustion turbines: what do economic projections and subscale combustor tests show? Joint ASME/IEEE Power Generation Conference, Dallas, ASME-Paper 89-JPGC/GT-4.

    Google Scholar 

  • Preußer, P. and Spindler, K. (1988). Druckkohlenstaubfeuerung: Stand, Wirkungsgrad und Entwicklungsziele. VGB Kraftwerkstechnik 68(9): 917–921.

    Google Scholar 

  • Pruschek, R. (1998). Improvement of IGCC power plants starting from the state of art, JOF3-CT95-0004, Final Report.

    Google Scholar 

  • Pruschek, R. (2002). Elektrizitätserzeugung aus fossilen Brennstoffen in Kraftwerken. In: E. Rebhan (ed.) Energiehandbuch: Gewinnung, Wandlung und Nutzung von Energie. Berlin, Springer.

    Google Scholar 

  • Pruschek, R., Oeljeklaus, G., Haupt, G. and Zimmermann, G. (1997). Kohlekraftwerke der Zukunft. Teil 2: Stand und Entwicklungspotentiale von GUD-Prozessen mit integrierter Kohlevergasung. BWK 49(11/12): 48–52.

    Google Scholar 

  • Pruschek, R., Renz, U. and Weber, E. (1990). Kohlekraftwerke der Zukunft – Stand der Entwicklung, Erprobung und Planung neuer Kohlekraftwerkstechnologien, Ministerium für Wirtschaft, Mittelstand und Technologie des Landes Nordrhein-Westfalen.

    Google Scholar 

  • Punjak, W. A., Uberoi, M. and Shadman, F. (1989). High-temperature Adsorption of Alkali Vapors on Solid Sorbents. AIChE Journal 35(7): 1186–1194.

    Google Scholar 

  • Radhakrishnan, P., Zakkay, V. and Agnone, A. (1986). Alkali and gas emissions from PFB combustion of lignite. Combustion Science and Technology 50: 271–281.

    Google Scholar 

  • Radtke, K. R., Henritz-Adrian, M. and Marsico, C. (2006). New wave of coal-to liquids. VGB PowerTech 86(5): 78–84.

    Google Scholar 

  • Radtke, K. R., Battensby, D. and Marscio, C. (2005). Renaissance of gasification based on cutting edge technologies. VGB PowerTech 85(9): 72–77.

    Google Scholar 

  • Ratcliff, P., Garbett, P. and Fischer, W. (2007). The new Siemens gas turbine SGT5-8000H for more customer benefit. VGB PowerTech 87(9): 128–132.

    Google Scholar 

  • Rehwinkel, H. (1989). Konzepte, Entwicklungsziele und Einsatzschwerpunkte für druckaufgeladene Wirbelschichtfeuerungen. VDI-Berichte 715: 237–258.

    Google Scholar 

  • Rehwinkel, H., Meier, H.-J. and von Wedel, G. (1993). Stationäre und zirkulierende Druckwirbelschichtfeuerung: Versuchsergebnisse und Anlagenkonzepte. VGB Kraftwerkstechnik 73(6): 529–535.

    Google Scholar 

  • Rehwinkel, H., Meier, H.-J. and von Wedel, G. (1992). Stationäre und zirkulierende Druckwirbelschichtfeuerung: Versuchsergebnisse und Anlagenkonzepte. VGB-Konferenz Wirbelschichtsysteme. Essen, VGB-TB 214.

    Google Scholar 

  • Reichelt, T. (2001). Freisetzung gasförmiger Alkaliverbindungen bei atmosphärischer und druckaufgeladenener Verbrennung. Düsseldorf, Fortschritt-Berichte VDI, Reihe 3, Nr. 687, VDI.

    Google Scholar 

  • Reichert, G., Thelen, F., Schmidt, D. and Weber, E. (1988). Untersuchung an Druckkohlenstaubfeuerungen. VGB Kraftwerkstechnik 68(10): 1017–1021.

    Google Scholar 

  • Renz, U. (1993). Heißgasfiltration bei Wirbelschichtfeuerungen. VDI-Berichte 1081.

    Google Scholar 

  • Renz, U. (1994). An assessment of PFBC technology, present and future. International Clean Coal Technology Symposium on PFBC. Japan, Kitakyushu.

    Google Scholar 

  • Riedle, K., Rukes, B. and Wittchow, E. (1990). Die Erhöhung des Kraftwerkswirkungsgrades in der Vergangenheit und in der Zukunft. VGB Konferenz “Kraftwerkstechnik 2000. Essen, VGB TB 120.

    Google Scholar 

  • Robertson, A., Fan, Z., Goldstein, H., Horazak, D., Newby, R. A. and Bose, A. C. (2005). 2nd generation PFB plant with super critical pressure steam turbine. Proceedings of the 22nd International Pittsburgh Coal Conference. September 12–15.

    Google Scholar 

  • Robertson, A., Goldstein, H., Horazak, D. and Newby, R. A. (2001). Second-generation PFB plant performance with W501G gas turbine. Proceedings of the 16th International Conference on Fluidized Bed Combustion. May 13–16, Reno, NV.

    Google Scholar 

  • Rogbeck, J. (1996). Utilisation of residues from PFBC. International Coal Technology Symposium on Coal Ash Utilisation. Tokyo.

    Google Scholar 

  • Rukes, B. (1993). Kraftwerkskonzepte für fossile Brennstoffe VDI-Berichte 1023, pp. 3–40.

    Google Scholar 

  • Ruth, L. A. (1997). The US department of energy’s combustion 2000 program: clean, efficient electricity from coal. Energy Conversion and Management 38(10–13): 1249–1257.

    Google Scholar 

  • Ruth, L. A. (2001). Advanced coal-fired power plants. Journal of Energy Resources Technology-Transactions of the ASME 123(1): 4–9.

    Google Scholar 

  • Sasatu, H., Tazawa, K., Goto, H., Misawa, N. and Sakuno, S. (2001). CTF development at Wakamatsu 71 MWe PFBC combined cycle power plant. Proceedings of the 16th International Conference on Fluidized Bed Combustion. May 13–16, Reno, NV, ASME.

    Google Scholar 

  • Scandrett, L. A. and Clift, R. (1984). The thermodynamics of alkali removal from coal-derived gases. Journal of the Institute of Energy, from http://www.ingentaconnect.com/content/maney/eni.(Dec): 391–397.

  • Schemenau, W. (1993). Druckwirbelschichtfeuerung – fortschrittliche Kohleverstromung mit Betriebserfahrung. BWK 45(1/2): 23–26.

    Google Scholar 

  • Schemenau, W. and Anderson, J. (1992). Druckwirbelschichtfeuerung – betriebsbewährte Kohleverstromung mit geringer Emission und gutem Wirkungsgrad. VGB-Konferenz Wirbelschichtsysteme, VGB-TB 214. Essen.

    Google Scholar 

  • Schemenau, W. and van den Bergh, C. (1993). Betriebserfahrungen bei druckaufgeladenen Wirbelschichtfeuerungen und neue Konzepte von Druckwirbelschichtfeuerungsanlagen großer Leistung. VDI-Bericht 1081, VDI: 19–44.

    Google Scholar 

  • Schetter, B., Becker, B. and Egener, E. G. (1991). Schadstoffarme Kohlegasverbrennung in modernen Gasturbinen. VGB-Konferenz Kohlevergasung 1991. Mai 16–17, Dortmund, VGB.

    Google Scholar 

  • Schiffer, H. P. (1989). Heißgasentstaubung. VDI-Berichte 715.

    Google Scholar 

  • Schöler, D. (2007). NGF/SGT5-8000H – Gasturbinentechnologie. 39. Kraftwerkstechnisches Kolloquium Dresden.

    Google Scholar 

  • Schuknecht, M. (2003). Entwicklungspotential eines Kombikraftwerks mit Druckkohlenstaubfeuerung, Universität Essen. Dissertation.

    Google Scholar 

  • Schürmann, H., Unterberger, S., Hein, K. R. G., Monkhouse, P. B. and Gottwald, U. (2001). The influence of fuel additives on the behaviour of gaseous alkali compounds during pulverised coal combustion. Faraday Discussions 119: 433–444.

    Google Scholar 

  • Shimuzu, M. and Itoh, M. (2001). Development and operation results of Osaki 250 MW commercial PFBC plant (Osaki 1-1 PFBC Plant). 16th International Conference on Fluidized Bed Combustion. May 13–16, Reno, NV.

    Google Scholar 

  • Singer, J. G. (1991). Combustion fossil power. Windsor, VT, Combustion Engineering.

    Google Scholar 

  • SolarTurbines (1980). Development of a ceramic tube heat exchanger with relaxing joint. Final report, DOE contract No. EF-77-C-01-2556, FE-2556-30.

    Google Scholar 

  • Spliethoff, H. (2000). Verbrennung fester Brennstoffe zur Strom- und Wärmeerzeugung: Verfahren und Stand der Technik – Wirkungsgrad, Betrieb, Emissionen und Reststoffe. VDI Fortschritt-Berichte, Reihe 6 Energietechnik, Nr. 443. Düsseldorf, VDI.

    Google Scholar 

  • Spliethoff, H. and Baum, J. (2002a). Externally fired combined cycle – Potential and state of the art (Part 1): BWK 54(5): 70–75.

    Google Scholar 

  • Spliethoff, H. and Baum, J. (2002b). Externally fired combined cycle-Potential and state of the art (Part 2): BWK 54(6): 52–56.

    Google Scholar 

  • Spliethoff, H., Meyer, B., Müller, M. and Hack, K. (2009). Investigations on high temperature gasification and gas cleaning – The research project HotVeGas. Proceedings of the 4th International Conference on Clean Coal Technologies for our Future (CCT), Dresden.

    Google Scholar 

  • Stoll, K. E. and Bleif, F. (1986). Entwicklung, Errichtung und Erprobung eines umweltfreundlichen Steinkohlekraftwerkes – Modellkraftwerk Völklingen. BMFT-Forschungsbericht T 86-025.

    Google Scholar 

  • Strauß, K. (2006). Kraftwerkstechnik: zur Nutzung fossiler, nuklearer und regenerativer Energiequellen. Berlin [u.a.], Springer.

    Google Scholar 

  • Stringer, J. (1989). Erosion and corrosion in PFBC systems. VDI-Berichte 715: 57–82.

    Google Scholar 

  • Stuhlmüller, F. and Schauenburg, G. (2001). The gas turbine in a power plant with pressurized circulating fluidized bed combustion. Proceedings of the 16th International Conference on Fluidized Bed Combustion.May 13–16, Reno, NV.

    Google Scholar 

  • Stuhlmüller, F., Schauenburg, G. and Waldinger, D. (1995). Die Standard-Gasturbine im Druckwirbelschicht-Einsatz. VGB Kraftwerkstechnik 75(12): 1037–1042.

    Google Scholar 

  • Takahashi, M., Nakabayashi, Y. and Kimura, N. (1995). Aktueller Stand der 350 MW-Wirbelschichtfeuerung Takehara und der 71-MW-Druckwirbelschichtfeuerung Wakamatsu der EPDC sowie der fortschrittlichen Stromerzeugung in Japan. VGB Kraftwerkstechnik 75(5): 427–432.

    Google Scholar 

  • Tampa_Electric (1996). The Tampa electric integrated gasification combined-cycle project, From http://www.fossil.energy.gov/programs/powersystems/publications/Clean_Coal_Topical_Reports/topical19.pdf.

  • Tampa_Electric (2002). Tampa electric polk power station IGCC project – Final technical report, August 2002, From http://www.netl.doe.gov/technologies/coalpower/cctc/cctdp/bibliography/demonstration/aepg/baepgig_tampaig.html.

  • Tampa_Electric (2004). Project performance summary, clean coal technology demonstration program, June 2004, from http://www.netl.doe.gov/technologies/coalpower/cctc/cctdp/bibliography/demonstration/aepg/baepgig_tampaig.html.

  • Terhaag, U., Renz, U., Dibelius, G., Bohn, D., Reinartz, A. and Steven, H. (1995). Ergebnisse aus dem Betrieb des druckaufgeladenenen Wirbelschicht-Dampferzeugers im Heizkraftwerk der RWTH Aachen. VGB Kraftwerkstechnik 75(3): 243–246.

    Google Scholar 

  • Thambimuthu, K. V. (1993). Gas cleaning for advanced coal-based power generation. London, IEA Coal Research. ieacr/53.

    Google Scholar 

  • Thelen, F. (1993). Gas-/Dampfturbinenprozesse für feste Brennstoffe mit Druckwirbelschichtfeuerung. VGB Kraftwerkstechnik 73(8): 671–677.

    Google Scholar 

  • Toriyama, A., Higashi, K., Maeno, H., Saito, T., Mori, M. and Hori, J. (1999). Operating results of the advanced ceramic tube filter (ACTF) at Wakamatsu 71 MW PFBC demonstration plant. Proceedings of the 15th International Conference on Fluidized Bed Combustion. May 16–19, Savannah, GA.

    Google Scholar 

  • Turn, S. Q., Kinoshita, C. M., Ishimura, D. M., Zhou, J., Hiraki, T. T. and Masutani, S. M. (1998). A review of sorbent materials for fixed bed alkali getter systems in biomass gasifier combined cycle applications. Journal of the Institute of Energy 71: 163–177.

    Google Scholar 

  • Uberoi, M. (1990). The kinetics and mechanism of alkali removal from flue gases by solid sorbents. Progress in Energy Combustion Science 16: 205–211.

    Google Scholar 

  • Uhde (2008). PRENFLO gasification. Dortmund, Uhde.

    Google Scholar 

  • Vandervort, C. L. (1991). High pressure ceramic air heater for indirectly fired gas turbine applications. Proceedings of the 8th Coal-Fueled Heat Engines and Gas Stream Cleanup Systems Contractors Review Meeting. Morgantown, WV.

    Google Scholar 

  • Vandervort, C. L. and Orozco, N. J. (1992). Development status of a utility-scale externally fired combined cycle. Proceedings of the 9th Annual International Pittsburgh Coal Conference, Pittsburgh.

    Google Scholar 

  • Walter, E., Krautz, H. J. and Almhem, P. (1997). Lignite fired combined cycle heat and power plant using pressurized fluidized bed combustion. Proceedings of the 14th International Conference on Fluidized Bed Combustion. ASME, Vancouver, Canada.

    Google Scholar 

  • Ward, M. E., Metcalfe, A. G. and Dapkunas, S. J. (1983). Ceramic tube heat exchanger technology development for indirect-fired gas turbine cycle. Transactions of the ASME 105: 310–316.

    Google Scholar 

  • Warner, J. and Nielsen, H. (1993). Umfassendes Auswahlverfahren ermöglicht optimale Auslegung von Kombikraftwerken. ABB Technik, Nr. 8.

    Google Scholar 

  • Wauschkuhn, A. (1994). Kostenvergleich von Kohlekraftwerken. Studienarbeit, Institut für Verfahrenstechnik und Dampfkesselwesen der Universität Stuttgart.

    Google Scholar 

  • Weber, E. and Pavone, D. (1990). Entwicklungslinien der Gasreinigung bei höchsten Gastemperaturen. Symposium Emissionsminderung mit dem Schwerpunkt Hochtemperatur- und Hochdruck-Gasreinigung, Essen.

    Google Scholar 

  • Weber, E., Hübner, K., Pavone, D., Schulz, R. and Wiggers, H. (1993). Entwicklungsergebnisse bei der Druckkohlenstaubfeuerung. VGB Kraftwerkstechnik 73(7): 602–607.

    Google Scholar 

  • Weimer, T., Berger, R., Hawthorne, C. and Abanades, J. C. (2008). Lime enhanced gasification of solid fuels: examination of a process for simultaneous hydrogen production and CO2 capture. Fuel 87(8–9): 1678–1686.

    Google Scholar 

  • Weitzel, P. S. and McDonald, D. K. (1999). PFBC design and arrangement improvements due to the application of ceramic tube filters. Proceedings of the 15th International Conference on Fluidized Bed Combustion. ASME, May 16–19 Savannah, GA.

    Google Scholar 

  • Weitzel, P. S., McDonald, D. K., Whitney, S. A. and Oda, N. (1996). Directions and trends for commercial PFBC and hot gas clean up. Pittsburgh, PA, Pittsburgh Coal Conference.

    Google Scholar 

  • Wen, C. S., Cowell, L. H., Smit, F. J., Boyd, J. D. and LeCren, R. T. (1992). Coal alkali retention in a slagging combustor. Fuel 71(2): 219–224.

    Google Scholar 

  • Wheeldon, J. M., Bonsu, A. K., Foote, J. P., Mortan, F. C., Romans, D. E. and Zoldak, F. D. (2001). Commissioning of the circulating PFBC in the Foster Wheeler advanced PFBC train at the PDSF. 16th International Conference on Fluidized Bed Combustion. May 13–16, Reno, NV.

    Google Scholar 

  • Willenborg, W., Muller, M. and Hilpert, K. (2006). Alkali removal at about 1400 degrees C for the pressurized pulverized coal combustion combined cycle. 1. Thermodynamics and concept. Energy & Fuels 20(6): 2593–2598.

    Google Scholar 

  • Wilson, D. G. (1993a). Low-leakage and high flow regenerators for gas turbine engines. Proceedings Institution of Mechanical Engineers 207: 195–202.

    Google Scholar 

  • Wilson, D. G. (1993b). The supplementary-fired exhaust-heated cycle for coal, wood and refuse-derived fuel. Proceedings Institution of Mechanical Engineers 207: pp. 203–208.

    Google Scholar 

  • Wilson, D. G., Frenkel, R. G., Kowalick, D. J., Nahatis, H. M., Silverstein, S. M. and Tampe, L. A. (1991). Coal-burning exhaust-heated-cycle gas turbine with a regenerative heat exchanger. international gas turbine and aeroengine. Congress and Exposition, ASME-Paper 91-GT-342 Orlando, FL.

    Google Scholar 

  • Wittchow, E. and Müller, R. (1993). Fortgeschrittene Kraftwerkskonzepte mit druckaufgeladenen Kohleumwandlungsverfahren. VDI-Berichte 715, 1989, pp. 21–44.

    Google Scholar 

  • Wright, I. G., Stringer, J. and Wheeldon, J. M. (2003). Material issues in bubbling PFBC systems. Materials At High Temperatures 20(2): 219–232.

    Google Scholar 

  • Wu, Z. (2006). Developments in fluidised bed combustion technology. London, IEA Clean Coal Centre.

    Google Scholar 

  • Zakkay, V., Gbordzoe, E., Radhakrishnan, R., Sellakumar, K. M., Patel, J., Kasinathan, R., Haas, W. J. and Eckels, D. E. (1989). Particulate and alkali capture from PFBC flue gas utilizing granular bed filter (GBF). Combustion Science and Technology 68: 113–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Spliethoff .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spliethoff, H. (2010). Coal-Fuelled Combined Cycle Power Plants. In: Power Generation from Solid Fuels. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02856-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02856-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02855-7

  • Online ISBN: 978-3-642-02856-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics