Skip to main content

Encoding Table Constraints in CLP(FD) Based on Pair-Wise AC

  • Conference paper
Logic Programming (ICLP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5649))

Included in the following conference series:

Abstract

We present an implementation of table constraints in CLP(FD). For binary constraints, the supports of each value are represented as a finite-domain variable, and action rules are used to propagate value exclusions. The bit-vector representation of finite domains facilitates constant-time removal of unsupported values. For n-ary constraints, we propose pair-wise arc consistency (AC), which ensures that each value has a support in the domain of every related variable. Pair-wise AC does not require introducing new problem variables as done in binarization methods and allows for compact representation of constraints. Nevertheless, pair-wise AC is weaker than general arc consistency (GAC) in terms of pruning power and requires a final check when a constraint becomes ground. To remedy this weakness, we propose adopting early checks when constraints are sufficiently instantiated. Our experimentation shows that pair-wise AC with early checking is as effective as GAC for positive constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacchus, F., Chen, X., van Beek, P., Walsh, T.: Binary vs. non-binary constraints. Artif. Intell. 140(1/2), 1–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bessière, C., Régin, J.-C.: Arc consistency for general constraint networks: Preliminary results. In: IJCAI (1), pp. 398–404 (1997)

    Google Scholar 

  3. Cheng, K.C.K., Yap, R.H.C.: Maintaining generalized arc consistency on ad hoc r-ary constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 509–523. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Demoen, B., Nguyen, P.-L.: Two WAM implementations of action rules. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 621–635. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Freuder, E.C.: Synthesizing constraint expressions. Commun. ACM 21(11), 958–966 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised arc consistency for extensional constraints. In: AAAI, pp. 191–197 (2007)

    Google Scholar 

  7. Hebrard, E.: Mistral, a constraint satisfaction library. In: van Dongen, M.R.C., Lecoutre, C., Roussel, O. (eds.) Proceedings of the Second International CSP Solver Competition, pp. 35–42 (2008)

    Google Scholar 

  8. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press, Cambridge (1989)

    Google Scholar 

  9. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional constraints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Lecoutre, C.: Optimization of simple tabular reduction for table constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 128–143. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Lecoutre, C., Julien, V.: Enforcing arc consistency using bitwise operations. Constraint Programming Letters 2, 21–35 (2008)

    Google Scholar 

  12. Mackworth, A.K.: On reading sketch maps. In: IJCAI, pp. 598–606 (1977)

    Google Scholar 

  13. Mohr, R., Henderson, T.C.: Arc and path consistency revisited. Artificial Intelligence 28, 225–233 (1986)

    Article  Google Scholar 

  14. Stergiou, K., Samaras, N.: Binary encodings of non-binary constraint satisfaction problems: Algorithms and experimental results. J. Artif. Intell. Res (JAIR) 24, 641–684 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Inf. Sci. 177(18), 3639–3678 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, N.-F.: Programming finite-domain constraint propagators in action rules. Theory and Practice of Logic Programming (TPLP) 6(5), 483–508 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou, N.-F.: BPSOLVER 2008. In: van Dongen, M.R.C., Lecoutre, C., Roussel, O. (eds.) Proceedings of the Third International CSP Solver Competition, pp. 83–90 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, NF. (2009). Encoding Table Constraints in CLP(FD) Based on Pair-Wise AC. In: Hill, P.M., Warren, D.S. (eds) Logic Programming. ICLP 2009. Lecture Notes in Computer Science, vol 5649. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02846-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02846-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02845-8

  • Online ISBN: 978-3-642-02846-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics