Skip to main content

Gesture Recognition with a 3-D Accelerometer

  • Conference paper
Ubiquitous Intelligence and Computing (UIC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5585))

Included in the following conference series:

Abstract

Gesture-based interaction, as a natural way for human-computer interaction, has a wide range of applications in ubiquitous computing environment. This paper presents an acceleration-based gesture recognition approach, called FDSVM (Frame-based Descriptor and multi-class SVM), which needs only a wearable 3-dimensional accelerometer. With FDSVM, firstly, the acceleration data of a gesture is collected and represented by a frame-based descriptor, to extract the discriminative information. Then a SVM-based multi-class gesture classifier is built for recognition in the nonlinear gesture feature space. Extensive experimental results on a data set with 3360 gesture samples of 12 gestures over weeks demonstrate that the proposed FDSVM approach significantly outperforms other four methods: DTW, Naïve Bayes, C4.5 and HMM. In the user-dependent case, FDSVM achieves the recognition rate of 99.38% for the 4 direction gestures and 95.21% for all the 12 gestures. In the user-independent case, it obtains the recognition rate of 98.93% for 4 gestures and 89.29% for 12 gestures. Compared to other accelerometer-based gesture recognition approaches reported in literature FDSVM gives the best resulrs for both user-dependent and user-independent cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schlömer, T., Poppinga, B., Henze, N., Boll, S.: Gesture Recognition with a Wii Controller. In: International Conference on Tangible and Embedded Interaction (TEI 2008), Bonn Germany, Feburary 18-20, pp. 11–14 (2008)

    Google Scholar 

  2. Tsukada, K., Yasumura, M.: Ubi-Finger: Gesture Input Device for Mobile Use. In: Proceedings of APCHI 2002, vol. 1, pp. 388–400 (2002)

    Google Scholar 

  3. Sawada, H., Hashimoto, S.: Gesture Recognition Using an Accelerometer Sensor and Its Application to Musical Performance Control. Electronics and Communications in Japan Part 3, 9–17 (2000)

    Google Scholar 

  4. Mäntylä, V.-M., Mäntyjärvi, J., Seppänen, T., Tuulari, E.: Hand Gesture Recognition of a Mobile Device User. In: Proceedings of the International IEEE Conference on Multimedia and Expo., pp. 281–284 (2000)

    Google Scholar 

  5. Mäntyjärvi, J., Kela, J., Korpipää, P., Kallio, S.: Enabling fast and effortless customization in accelerometer based gesture interaction. In: Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia (MUM 2004), October 27-29, pp. 25–31. ACM Press, New York (2004)

    Chapter  Google Scholar 

  6. Mäntylä, V.-M.: Discrete Hidden Markov Models with Application to Isolated User-Dependent Hand Gesture Recognition. VTT publications (2001)

    Google Scholar 

  7. Hofmann, F.G., Heyer, P., Hommel, G.: Velocity profile based recognition of dynamic gestures with discrete hidden markov models. In: Wachsmuth, I., Fröhlich, M. (eds.) GW 1997. LNCS, vol. 1371, pp. 81–95. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Ravi, N., Dandekar, N., Musore, P., Littman, M.: Activity Recognition from Accelerometer Data. In: Proceedings of IAAI 2008, July 2005, pp. 11–18 (2005)

    Google Scholar 

  9. Frigo, M., Johnson, S.G.: The Design and implementation of FFTW3. Proceedings of the IEEE 93(2) (2005)

    Google Scholar 

  10. Joachims, T.: Making large-Scale SVM Learning Practical. In: Schöllkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods – Support Vector Learning. MIT-Press, Cambridge (1999)

    Google Scholar 

  11. Christanini, J., Taylor, J.S.: An Introduction to Support Vector Machines and other Kernel-based Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  12. Mitra, S., Acharya, T.: Gesture Recognition: A Survey. IEEE Trans. Systems, Man, and Cybernetics, Part C 37(3), 311–324 (2007)

    Article  Google Scholar 

  13. Quinlan, J.R.: Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996)

    MATH  Google Scholar 

  14. Moghaddam, B., Yang, M.-H.: Learning Gender with Support Faces, IEEE Trans. Pattern Analysis and Machine Intelligence 24(5), 707–711 (2002)

    Article  Google Scholar 

  15. Osuna, E., Freund, R., Girosi, F.: Training Support Vector Machines: An Application to Face Detection. In: Proc. IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition, pp. 130–136 (1997)

    Google Scholar 

  16. Cho, S.-J., Choi, E., Bang, W.-C., Yang, J., Sohn, J., Kim, D.Y., Lee, Y.-B., Kim, S.: Two-stage Recognition of Raw Acceleration Signals for 3D-Gesture-Understanding Cell Phones. In: 10th International Workshop on Frontiers in Handwriting Recognition (2006)

    Google Scholar 

  17. Niezen, G., Hancke, G.P.: Gesture recognition as ubiquitous input for mobile phones. In: International Workshop on Devices that Alter Perception (DAP 2008), conjunction with Ubicomp 2008 (2008)

    Google Scholar 

  18. Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: Accelerometer-based Personalized Gesture Recognition and Its Applications. In: IEEE PerCom 2009 (2009)

    Google Scholar 

  19. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Wilson, D.H., Wilson, A.: Gesture Recognition using the XWand, Technical Report CMU-RI-TR-04-57, CMU Robotics Institute (2004)

    Google Scholar 

  21. Apple iPhone, http://www.apple.com/iphone

  22. Nintendo Wii, http://www.nintendo.com/wii

  23. Hommel, G., Hofmann, F.G., Henz, J.: The TU Berlin High-Precision Sensor Glove. In: Proceedings of the WWDU 1994, Fourth International Scientific Conference, vol. 2, pp. 47–49. University of Milan, Milan (1994)

    Google Scholar 

  24. Kela, J., Korpipaa, P., Mantyjarvi, J., Kallio, S., Savino, G., Jozzo, L., Marca, D.: Accelerometer-based gesture control for a design environment. Personal Ubiquitous Computing 10, 285–299 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, J., Pan, G., Zhang, D., Qi, G., Li, S. (2009). Gesture Recognition with a 3-D Accelerometer. In: Zhang, D., Portmann, M., Tan, AH., Indulska, J. (eds) Ubiquitous Intelligence and Computing. UIC 2009. Lecture Notes in Computer Science, vol 5585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02830-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02830-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02829-8

  • Online ISBN: 978-3-642-02830-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics