Skip to main content

A Framework to Calibrate a MEMS Sensor Network

  • Conference paper
Ubiquitous Intelligence and Computing (UIC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5585))

Included in the following conference series:

Abstract

The Smart Surface project aims at designing an integrated micro-manipulator based on an array of micromodules connected with a 2D array topology network. Each micromodule comprises a sensor, an actuator and a processing unit. One of the aims of the processing unit is to differentiate the shape of the part that is put on top of the Smart Surface. From a set of shapes this differentiation is done through a distributed algorithm that we call a criterion. The article presents Sensor Network Calibrator (SNC), a calibrator which allows to parametrize the Smart Surface and to determine the necessary number of sensors required by our Smart Surface. The tests will show that SNC is of great importance for choosing the number of sensors, and therefore to determine the size of the sensors grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pister, K., Fearing, R., Howe, R.: A planar air levitated electrostatic actuator system. In: IEEE Workshop on Micro Electro Mechanical Systems, pp. 61–71 (1990)

    Google Scholar 

  2. Fujita, H.: Group work of microactuators. In: International Advanced Robot Program Workshop on Micromachine Technologies and Systems, Tokyo, Japan, pp. 24–31 (October 1993)

    Google Scholar 

  3. Luntz, J.E., Messner, W.: A distributed control system for flexible materials handling. IEEE Control Systems 17(1) (February 1997)

    Google Scholar 

  4. Luntz, J.E., Messner, W., Choset, H.: Parcel manipulation and dynamics with a distributed actuator array: The virtual vehicle. In: IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1541–1546 (1997)

    Google Scholar 

  5. Liu, C., Tsao, T., Will, P., Tai, Y., Liu, W.: A micromachined permalloy magnetic actuator array for micro robotics assembly systems. In: The 8th International Conference on Solid-State Sensors and Actuators (1995)

    Google Scholar 

  6. Suh, J., Glander, S., Darling, R., Storment, C., Kovacs, G.: Combined organic thermal and electrostatic omnidirectional ciliary microactuator array for object positioning and inspection. In: Solid State Sensor and Actuator Workshop (1996)

    Google Scholar 

  7. Goldberg, K.Y.: Orienting polygonal parts without sensors. Algorithmica 10(2-4), 210–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Böhringer, K.F., Bhatt, V., Donald, B.R., Goldberg, K.Y.: Algorithms for sensorless manipulation using a vibrating surface. Algorithmica 26(3-4), 389–429 (2000)

    Article  MathSciNet  Google Scholar 

  9. Murilo, G.C., Peter, M.W.: A general theory for positioning and orienting 2d polygonal or curved parts using intelligent motion surfaces. In: ICRA, pp. 856–862 (1998)

    Google Scholar 

  10. Biegelsen, D., Berlin, A., Cheung, P., Fromherts, M., Goldberg, D., Jackson, W., Preas, B., Reich, J., Swartz, L.: Airjet paper mover. In: SPIE Int. Symposium on Micromachining and Microfabrication (2000)

    Google Scholar 

  11. Fukuta, Y., Chapuis, Y.A., Mita, Y., Fujita, H.: Design, fabrication and control of MEMS-based actuator arrays for air-flow distributed micromanipulation. IEEE Journal of Micro-Electro-Mechanical Systems 15(4), 912–926 (2006)

    Article  Google Scholar 

  12. Boutoustous, K., Dedu, E., Bourgeois, J.: An exhaustive comparison framework for distributed shape differentiation in a MEMS sensor actuator array. In: International Symposium on Parallel and Distributed Computing (ISPDC), Krakow, Poland, July 2008, pp. 429–433. IEEE Computer Society Press, Los Alamitos (2008)

    Google Scholar 

  13. Loncaric, S.: A survey of shape analysis techniques. Pattern Recognition 31(8), 983–1001 (1998)

    Article  Google Scholar 

  14. Zhang, D., Lu, G.: Content-based shape retrieval using different shape descriptors: A comparative study. In: ICME. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  15. Zhang, D., Lu, G.: Shape-based image retrieval using generic Fourier descriptor. SPIC 17(10), 825–848 (2002)

    Google Scholar 

  16. Zhang, D., Lu, G.: Study and evaluation of different Fourier methods for image retrieval. Image Vision Comput. 23(1), 33–49 (2005)

    Article  Google Scholar 

  17. Diaz de Léon, R., Sucar, L.: Human silhouette recognition with Fourier descriptors. In: ICPR 2000, vol. III, pp. 709–712 (2000)

    Google Scholar 

  18. Derrode, S., Daoudi, M., Ghorbel, F.: Invariant content-based image retrieval using a complete set of Fourier-Mellin descriptors. In: ICMCS, vol. 2, pp. 877–881 (1999)

    Google Scholar 

  19. Lingrand, D.: Introduction au Traitement d’Images, 2nd edn. Vuibert, Paris (2008)

    Google Scholar 

  20. Bres, S., Jolion, J.M., Lebourgeois, F.: Traitement et analyse des images numériques. Hermès (2003)

    Google Scholar 

  21. Forssén, P.E., Moe, A.: Contour descriptors for view-based object recognition. Technical Report LiTH-ISY-R-2706, Dept. EE, Linköping University, SE-581 83 Linköping, Sweden (September 2005)

    Google Scholar 

  22. Sun, J., Wu, X.: Shape retrieval based on the relativity of chain codes. In: Sebe, N., Liu, Y., Zhuang, Y.-t., Huang, T.S. (eds.) MCAM 2007. LNCS, vol. 4577, pp. 76–84. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Sajjanhar, A., Lu, G.: A grid-based shape indexing and retrieval method. Australian Computer Journal 29(4), 131–140 (1997)

    Google Scholar 

  24. Shahabi, C., Safar, M.: An experimental study of alternative shape-based image retrieval techniques. Multimedia Tools Appl. 32(1), 29–48 (2007)

    Article  Google Scholar 

  25. Prokop, R., Reeves, A.: A survey of moment-based techniques for unoccluded object representation and recognition. GMIP 54(5), 438–460 (1992)

    Google Scholar 

  26. Chen, C.: Improved moment invariants for shape discrimination. Pattern Recognition 26(5), 683–686 (1993)

    Article  Google Scholar 

  27. Mercimek, M., Gulez, K., Velimumcu, T.: Real object recognition using moment invariants. Sadhana 30(6), 765–775 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boutoustous, K., Dedu, E., Bourgeois, J. (2009). A Framework to Calibrate a MEMS Sensor Network. In: Zhang, D., Portmann, M., Tan, AH., Indulska, J. (eds) Ubiquitous Intelligence and Computing. UIC 2009. Lecture Notes in Computer Science, vol 5585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02830-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02830-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02829-8

  • Online ISBN: 978-3-642-02830-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics