Skip to main content

Liquid-Core Waveguide Sensors

  • Chapter

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 8))

Abstract

Much of chemistry and biology involves liquid substances. It is, therefore, not surprising that a strong need for instruments that can sense the presence, absence, or properties of liquids and their constituents exists in both of these vast fields. The miniaturization paradigm that has driven many industrial developments, including the area of sensors, provides a strong push to use optical waveguides for implementing sensing functions in compact, robust, and convenient form. The most direct approach is the use of liquid-core waveguides, in which both light and liquids are guided through the same physical space, thus providing the most efficient interaction between the two. Fueled by recent developments of novel types of liquid-core waveguides, these devices are rapidly moving to the forefront of research and development of biological and chemical sensors. Here, we take a closer look at liquid-core waveguides by discussing the physical principles underlying the most important waveguide types, discussing the most popular optical sensing modalities, and reviewing representative examples for liquid-core waveguide-based chemical and biological sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ARGOW:

Antiresonant guided optical wave

ARROW:

Antiresonant reflecting optical waveguide

FOCap:

Fiber-optical capillary

HC-PCF:

Hollow-core photonic-crystal fiber

LCORR:

Liquid-core optical ring resonators

LCWG:

Liquid-core waveguides

RIU:

Refractive index units

TIR:

Total-internal reflection

ZMWG:

Zero-mode waveguides

α:

Waveguide loss

λ:

Wavelength

ω:

Angular frequency

d :

Waveguide core dimension

L :

Interaction length

n :

Refractive index

n c :

Waveguide core index

n cl :

Waveguide cladding index

R :

Reflectivity

K :

Bloch wave vector

β:

Wave vector

θc :

Critical angle of incidence

P in :

Input power

P out :

Output power

References

  1. Stone J (1972) Optical transmission in liquid-core quartz fibers. Appl Phys Lett 20:239–240

    Article  CAS  Google Scholar 

  2. Payne DN, Gambling WA (1972) New low-loss liquid-core fibre waveguide. Electron Lett 8:374–376

    Article  CAS  Google Scholar 

  3. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators A Phys 54:3–15

    Article  Google Scholar 

  4. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J 7:1118–1129

    Article  Google Scholar 

  5. Balslev S, Jorgensen AM, Bilenberg B, Mogensen KB, Snakenborg D, Geschke O, Kutter JP, Kristensen A (2006) Lab-on-a-chip with integrated optical transducers. Lab on a Chip 6:213

    Article  CAS  Google Scholar 

  6. Yeh P (2005) Optical waves in layered media, 2nd edn. Wiley, New York

    Google Scholar 

  7. Okamoto K (2005) Fundamentals of optical waveguides, 2nd edn. Academic, London

    Google Scholar 

  8. Hunsperger RG (2002) Integrated optics, 5th edn. Springer, Berlin

    Google Scholar 

  9. Schelle B, Dreß P, Franke H, Klein KF, Slupek J (1999) Physical characterization of lightguide capillary cells. J Phys D Appl Phys 32:3157–3163

    Article  CAS  Google Scholar 

  10. Datta A, Eom I, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta P (2003) Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3:788–795

    Article  CAS  Google Scholar 

  11. Grewe M, Grosse A, Fouckhardt H (2000) Theoretical and experimental investigations of the optical waveguiding properties of on-chip microfabricated capillaries. Appl Phys B 70:S839–S847

    CAS  Google Scholar 

  12. Risk WP, Kim HC, Miller RD, Temkin H, Gangopadhyay S (2004) Optical waveguides with an aqueous core and a low-index nanoporous cladding. Opt Express 12:6446–6455

    Article  CAS  Google Scholar 

  13. Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci USA 101:12434–12438

    Article  CAS  Google Scholar 

  14. Bernini R, DeNuccio E, Minardo A, Zeni L, Sarro PM (2008) Liquid-core/liquid-cladding integrated silicon ARROW waveguides. Opt Commun 281:2062–2066

    Article  CAS  Google Scholar 

  15. Almeida VR, Xu Q, Barrios CA, Lipson M (2004) Guiding and confining light in void nanostructures. Opt Lett 29:1209–1211

    Article  Google Scholar 

  16. Xu Q, Almeida VR, Panepucci RR, Lipson M (2004) Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt Lett 29:1626–1628

    Article  CAS  Google Scholar 

  17. Marcatili EAJ, Schmeltzer RA (1964) Bell Syst Tech J 43:1783

    Google Scholar 

  18. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  19. Mohebbi M, Fedosejevs R, Gopal V, Harrington JA (2002) Silver-coated hollow-glass waveguide for applications at 800nm. Appl Opt 41:7031–7035

    Article  CAS  Google Scholar 

  20. Saleh BEA, Teich MC (2007) Fundamentals of photonics. Wiley, New York

    Google Scholar 

  21. Keller BK, DeGrandpre MD, Palmer CP (2007) Waveguiding properties of fiber-optic capillaries for chemical sensing applications. Sensors Actuators B Chem 125:360–371

    Article  Google Scholar 

  22. Wang T, Aiken JH, Huie CW, Hartwick RA (1991) Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis. Anal Chem 63:1372–1376

    Article  CAS  Google Scholar 

  23. Schmidt O, Bassler M, Kiesel P, Johnson NM, Doehler GH (2006) Guiding light in fluids. Appl Phys Lett 88:151109

    Article  Google Scholar 

  24. Martelli C, Canning J, Lyytikainen K, Groothoff N (2005) Water-core Fresnel fiber. Opt Express 13:3890–3895

    Article  Google Scholar 

  25. Canning J, Buckley E, Lyytikainen K (2003) Propagation in air by field superposition of scattered light within a Fresnel fiber. Opt Lett 28:230–232

    Article  CAS  Google Scholar 

  26. Levene MJ, Korlach J, Turner SW, Fouquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686

    Article  CAS  Google Scholar 

  27. Yeh P, Yariv A (1978) Bragg reflection waveguides. Opt Commun 19:427–430

    Article  Google Scholar 

  28. Yeh P, Yariv A, Hong C (1977) Electromagnetic propagation in periodic stratified media. I. General theory. J Opt Soc Am 67:423–438

    Article  Google Scholar 

  29. Yeh P, Yariv A, Maron E (1978) Theory of Bragg fiber. J Opt Soc Am 68:1196–1201

    Article  Google Scholar 

  30. Xu Y, Lee RK, Yariv A (2000) Asymptotic analysis of Bragg fiber. Opt Lett 25:1756–1758

    Article  CAS  Google Scholar 

  31. Fink Y, Ripin DJ, Fan S, Chen C, Joannopoulos JD, Thomas EL (1999) Guiding optical light in air using an all-dielectric structure. J Lightwave Technol 17:2039–2041

    Article  Google Scholar 

  32. Temelkuran B, Hart SD, Benoit G, Joannopoulos JD, Fink Y (2002) Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420:650–653

    Article  CAS  Google Scholar 

  33. Winn JN, Fink J, Fan S, Joannopoulos JD (1998) Omnidirectional reflection from a one-dimensional photonic crystal. Opt Lett 23:1573

    Article  CAS  Google Scholar 

  34. Cregan RF, Mangan BJ, Knight JC, Birks TA, Russell PSJ, Roberts PJ, Allan DC (1999) Single-mode photonic band gap guidance of light in air. Science 285:1537–1539

    Article  CAS  Google Scholar 

  35. Russell P (2003) Photonic crystal fiber. Science 299:358–362

    Article  CAS  Google Scholar 

  36. Mach P, Dolinski M, Baldwin KW, Rogers JA, Kerbage C, Windeler RS, Eggleton BJ (2002) Tunable microfluidic optical fiber. Appl Phys Lett 80:4294–4296

    Article  CAS  Google Scholar 

  37. Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59–61

    Article  Google Scholar 

  38. Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J, Hou L, Yao Y (2006) Hollow core photonic crystal fiber surface-enhanced Raman probe. Appl Phys Lett 89:204101

    Article  Google Scholar 

  39. Cordeiro CMB, de Matos CJS, dos Santos EM, Bozolan A, Ong JSK, Facincani T, Chesini G, Vaz AR, Brito Cruz CH (2007) Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre. Meas Sci Technol 18:3075–3081

    Article  CAS  Google Scholar 

  40. Joannopoulos JD, Meade RD, Winn JN (1995) Molding the flow of light: photonic crystals. Princeton University Press, Princeton

    Google Scholar 

  41. Loncar M, Nedeljkovic D, Doll T, Vuckovic J, Scherer A, Pearsall TP (2000) Waveguiding in planar photonic crystals. Appl Phys Lett 77:1937–1939

    Article  CAS  Google Scholar 

  42. McNab S, Moll N, Vlasov Y (2003) Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt Express 11:2927–2939

    Article  Google Scholar 

  43. Archambault JL, Black RJ, Lacroix S, Bures J (1993) Loss calculations for antiresonant waveguides. J Lightwave Technol 11:416–423

    Article  Google Scholar 

  44. Duguay MA, Kokubun Y, Koch T, Pfeiffer L (1986) Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl Phys Lett 49:13–15

    Article  CAS  Google Scholar 

  45. Mawst LJ, Botez D, Zmudzinski C, Tu C (1992) Design optimization of ARROW-type diode lasers. IEEE Photon Technol Lett 4:1204–1206

    Article  Google Scholar 

  46. Patterson SG, Petrich SG, Ram RJ, Kolodiejski R (1999) Continuous-wave room temperature operation of bipolar cascade laser. Electron Lett 35:397–397

    Article  Google Scholar 

  47. Delonge T, Fouckhardt H (1995) Integrated optical detection cell based on Bragg reflecting waveguides. J Chromatogr A 716:135–139

    Article  CAS  Google Scholar 

  48. Bernini R, Campopiano S, Zeni L, Sarro PM (2004) ARROW optical waveguides based sensors. Sensors Actuators B Chem 100:143–146

    Article  Google Scholar 

  49. Yin D, Barber JP, Hawkins AR, Deamer DW, Schmidt H (2004) Integrated optical waveguides with liquid cores. Appl Phys Lett 85:3477–3479

    Article  CAS  Google Scholar 

  50. Yin D, Barber JP, Lunt EJ, Hawkins AR, Schmidt H (2005) Optical characterization of arch-shaped ARROW waveguides with liquid cores. Opt Express 13:10564–10569

    Article  Google Scholar 

  51. Schmidt H, Yin D, Barber JP, Hawkins AR (2005) Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids. IEEE J Sel Top Quantum Electron 11:519–527

    Article  CAS  Google Scholar 

  52. Yin D, Barber JP, Deamer DW, Hawkins AR, Schmidt H (2006) Single-molecule detection sensitivity using planar integrated optics on a chip. Opt Lett 31:2136–2138

    Article  CAS  Google Scholar 

  53. Ashkin A (1994) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci USA 94:4853–4860

    Article  Google Scholar 

  54. Gerhardt I, Wrigge G, Agio M, Bushev P, Zumofen G, Sandoghdar V (2007) Scanning near-field optical coherent spectroscopy of single molecules at 1.4 K. Opt Lett 32:1420–1422

    Article  Google Scholar 

  55. Hong K, Burgess LW (1994) Liquid-core waveguides for chemical sensing. Proc SPIE 2293:71–79

    Article  CAS  Google Scholar 

  56. Mizaikoff B, Young C, Charlton C, Temelkuran B, Dellemann G, Giovannini M, Faist J (2006) Trace sensing with miniaturized mid-infrared sensors. IEEE Sens Daegu, (Korea):331–333

    Google Scholar 

  57. Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA (1990) Detection of single fluorescent molecules. Chem Phys Lett 174:553

    Article  CAS  Google Scholar 

  58. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin

    Google Scholar 

  59. Rigler R, Elson ES (2001) Fluorescence correlation spectroscopy, 1st edn. Springer, Berlin

    Google Scholar 

  60. Vezenov DB, Mayers BT, Wolfe DB, Whitesides GM (2005) Integrated fluorescent light source for optofluidic applications. Appl Phys Lett 86:041104

    Article  Google Scholar 

  61. Smolka S, Barth M, Benson O (2007) Selectively coated photonic crystal fiber for highly sensitive fluorescence detection. Appl Phys Lett 90:111101

    Article  Google Scholar 

  62. Yin D, Lunt EJ, Barman A, Hawkins AR, Schmidt H (2007) Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics. Opt Express 15:7290–7295

    Article  CAS  Google Scholar 

  63. Rudenko MI, Kühn S, Lunt EJ, Deamer DW, Hawkins AR, Schmidt H (2009) Ultrasensitive Qβ Phage analysis using fluorescence correlation spectroscopy on an optofluidic chip. Biosensors and Bioelectronics 24:3258–3263

    Article  Google Scholar 

  64. Yin D, Lunt EJ, Rudenko MI, Deamer DW, Hawkins AR, Schmidt H (2007) Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip 7:1171

    Article  CAS  Google Scholar 

  65. Samiee KT, Moran-Mirabal JM, Cheung YK, Craighead HG (2006) Zero mode waveguides for single-molecule spectroscopy on lipid membranes. Biophys J 90:3288–3299

    Article  CAS  Google Scholar 

  66. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering. Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  67. Shapiro HM (1995) Practical flow cytometry, 3rd edn. Wiley, New York

    Google Scholar 

  68. Lien V, Zhao K, Lo Y (2005) Fluidic photonic circuit for in-line detection. Appl Phys Lett 87:194106

    Article  Google Scholar 

  69. Mandal S, Erickson D (2007) Optofluidic transport in liquid core waveguiding structures. Appl Phys Lett 90:184103

    Article  Google Scholar 

  70. Measor P, Kühn S, Lunt EJ, Phillips BS, Hawkins AR, Schmidt H (2008) Hollow-core waveguide characterization by optically induced particle transport. Opt Lett 33:672–674

    Article  Google Scholar 

  71. Altkorn R, Koev I, Van Duyne RP, Litorja M (1997) Low-loss liquid-core optical fiber for low-refractive index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl Opt 36:8992–8998

    Article  CAS  Google Scholar 

  72. Zhang Y, Shi C, Gu C, Seballos L, Zhang JZ (2007) Liquid-core photonic crystal fiber sensor based on surface-enhanced Raman scattering. Appl Phys Lett 90:193504

    Article  Google Scholar 

  73. Measor P, Lunt EJ, Seballos L, Yin D, Zhang JZ, Hawkins AR, Schmidt H (2007) On-chip Surface-enhanced Raman scattering (SERS) detection using integrated liquid-core waveguides. Appl Phys Lett 90:211107

    Article  Google Scholar 

  74. Dumais P, Callender CL, Noad JP, Ledderhof CJ (2006) Liquid-core modal interferometer integrated with silica waveguides. IEEE Photon Technol Lett 18:746–748

    Article  CAS  Google Scholar 

  75. Rindorf L, Jensen JB, Dufva M, Pedersen LH, Høiby PE, Bang O (2006) Photonic crystal fiber long-period gratings for biochemical sensing. Opt Exp 14:8224–8231

    Article  CAS  Google Scholar 

  76. Campopiano S, Bernini R, Zeni R, Sarro PM (2004) Microfluidic sensor based on integrated optical hollow waveguides. Opt Lett 29:1894–1896

    Article  Google Scholar 

  77. White IM, Oveys H, Fan X (2006) Liquid-core optical ring-resonator sensors. Opt Lett 31:1319–1321

    Article  Google Scholar 

  78. White IM, Zhu H, Suter JD, Hanumegowda NM, Oveys H, Zourob M, Fan X (2007) Refractometric sensors for lab-on-a-chip based on optical ring resonators. IEEE Sens J 7:28–35

    Article  Google Scholar 

  79. Sun Y, Shopova SI, Frye-Mason G, Fan X (2008) Rapid chemical-vapor sensing using optofluidic ring resonators. Opt Lett 33:788–790

    Article  CAS  Google Scholar 

  80. Suter JD, White IM, Zhu H, Shi H, Caldwell CW, Fan X (2008) Label-free quantitative DNA detection using the liquid-core optical ring resonator. Biosens Bioelectron 23:1003–1009

    Article  CAS  Google Scholar 

  81. Potyrailo RA, Hobbs SE, Hieftje GM (1998) Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications, and trends for future development. Fresenius J Anal Chem 362:349–373

    Article  CAS  Google Scholar 

  82. Preston T, Jones ND, Stille S, Mittler S (2006) Simple liquid-core waveguide polarimetry. Appl Phys Lett 89:253509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, H. (2010). Liquid-Core Waveguide Sensors. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors II. Springer Series on Chemical Sensors and Biosensors, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02827-4_8

Download citation

Publish with us

Policies and ethics