Skip to main content

Applications of Fiber Gratings in Chemical and Biochemical Sensing

  • Chapter
Optical Guided-wave Chemical and Biosensors II

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 8))

Abstract

The basic idea of using fiber gratings for chemical and biochemical sensing is presented in this chapter. The physical nature and practical applications of regular and tilted fiber Bragg (FBG) as well as long-period (LPG) gratings and the associated LPG-based interferometers are discussed. Sensitivity characteristics and methods of fabrication are considered. Various chemical and biochemical sensing applications are described and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge-coupled device

DNA:

Deoxyribonucleic acid

DNP:

Dinitrophenyl compound

FBG:

Fiber Bragg grating

FM:

Fundamental mode

HIV:

Human immunodeficiency virus

HOCM:

Higher-order cladding mode

ISAM:

Ionic self-assembled multilayers

LPG:

Long-period grating

MSFBG:

Microstructured FBG

MSOF:

Microstructured optical fibers

OSA:

Optical spectrum analyzer

PAH:

Poly(alamine hydrochlodride)

POC:

Point-of-care

PVA–PAA:

Polyvynil alcohol–polyacrylic acid

RIU:

Refractive index unit

SDM:

Space division multiplexing

SRI:

Surrounding refractive index

TAP:

Turnaround point

TDM:

Time division multiplexing

TFBG:

Tilted fiber Bragg grating

UV:

Ultraviolet

WDM:

Wavelength division multiplexing

b :

Radius of fiber cladding

J 0 :

Bessel function

N :

Number of pitches along a grating

n :

Higher refractive index of the periodic structure

n 0 :

Lower refractive index of the periodic structure

n 1 :

Fiber core refractive index

n 2 :

Fiber cladding refractive index

n a :

Ambient refractive index (SRI)

n′ a :

Ambient refractive index (SRI) after a change δn a is introduced

n air :

Refractive index of air

n c :

Effective refractive index of the fundamental core mode

n cl :

Effective refractive index of the higher-order cladding mode

n e :

Effective refractive index of the fiber

n e,i :

Effective refractive index of the core mode at λ i

n i :

Effective refractive index of the cladding mode at λ i

n m :

Effective refractive index of the m-th HOCM of an LPG

β c :

Propagation constant of the fundamental core mode

β cl :

Propagation constant of the higher-order cladding core mode

δn a :

A change in the SRI

Λ:

Actual pitch length for a straight LPG or effective pitch length in a tilted LPG

Λg :

Actual pitch length in tilted LPG

λ:

Wavelength

λB :

Resonance Bragg wavelength

λ i :

Resonance wavelengths of the HOCMs of a TFBG

λ m,LPG :

LPG resonance wavelength corresponding to the m-th HOCM

δλ :

Center wavelength shift

Δλ :

Finite center wavelength shift

K ε :

FBG strain sensitivity coefficient

K T :

FBG temperature sensitivity coefficient

K p :

FBG pressure sensitivity coefficient

K ε,m :

LPG strain sensitivity coefficient for the m-th HOCM

K T,m :

LPG temperature sensitivity coefficient for the m-th HOCM

K p,m :

LPG pressure sensitivity coefficient for the m-th HOCM

K b,m :

LPG bending sensitivity coefficient for the m-th HOCM

K τ,m :

LPG sensitivity coefficient to torsion for the m-th HOCM

K n,m :

LPG sensitivity coefficient to SRI for the m-th HOCM

S ε :

Strain sensitivity

S T :

Temperature sensitivity

S p :

Pressure sensitivity

u :

The m-th root of the Bessel function J 0

References

  1. Allsop T, Zhang L, Bennion I (2001) Detection of organic aromatic compounds in paraffin by a long-period fiber grating optical sensor with optimized sensitivity. Opt Commun 191:181–190

    Article  CAS  Google Scholar 

  2. Allsop T, Reeves R, Webb DJ, Bennion I (2002) A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer. Rev Sci Instrum 73:1702

    Article  CAS  Google Scholar 

  3. Brakel A (2004) Sensing characteristics of an optical fibre long-period grating Michelson refractometer. Ph.D. thesis, Rand Afrikaans University, p 317

    Google Scholar 

  4. Carville DGM (2002) Fiber optics for the detection of clinical analytes, IVD Technology January 2002, http://www.devicelink.com/ivdt/archive/02/01/003.html

  5. Chan C, Chen C, Jafan A, Laronche A, Thomson D, Albert J (2007) Optical fiber refractometer using narrowband cladding mode resonances shifts. Appl Opt 46(7):1142–1149

    Article  Google Scholar 

  6. Chen X, Zhou K, Zhang L, Bennion I (2004) Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching. IEEE Photonics Technol Lett 16(5):1352–1354

    Article  CAS  Google Scholar 

  7. Chen C, Caucheteur C, Mégret P, Albert J (2007) The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses. Meas Sci Technol 18:3117–3122

    Article  CAS  Google Scholar 

  8. Chiang KS, Liu Y, Ng MN, Dong X (2000) Analysis of etched long-period fiber gratings and its response to external refractive index. Electron Lett 36(11):966–967

    Article  Google Scholar 

  9. Chong J, Shum P, Haryono H, Yohana A, Rao M, Lu C, Zhu Y (2004) Measurements of refractive index sensitivity using long-period grating refractometer. Opt Commun 229:65–69

    Article  CAS  Google Scholar 

  10. Cusano A, Iadicicco A, Campopiano S, Giordano M, Cutolo A (2005) Thinned and micro-structured fiber bragg gratings: towards new all fiber high sensitivity chemical sensors. J Opt A Pure Appl Opt 7:734–741

    Article  CAS  Google Scholar 

  11. Cusano A, Iadicicco A, Pilla P, Contessa L, Campopiano S, Cutolo A, Giordano M, Guerra G (2006) Coated long-period fiber gratings as high-sensitivity optochemical sensors. J Lightwave Technol 24:1776–1786

    Article  CAS  Google Scholar 

  12. Cusano A, Iadicicco A, Pilla P, Contessa L, Campopiano S, Cutolo A, Giordano M (2006) Mode transition in high refractive index coated long period gratings. Opt Express 14:19–34

    Article  CAS  Google Scholar 

  13. Erdogan T (1997) Fiber grating spectra. J Lightwave Technol 15:1277–1294

    Article  Google Scholar 

  14. Falate R, Kamikawachi RC, Fabris J, Müller M, Kalinowski H (2004) Fiber optic hydrocarbon sensors based long period gratings. J Microwave Optoelectron 3(5):47–55

    Google Scholar 

  15. Falate R, Kamikawachi RC, Műller M, Kalinowski HJ, Fabris JL (2005) Fiber optic sensors for hydrocarbon detection. Sensors Actuators B Chem 105:430–436

    Article  Google Scholar 

  16. Falciai R, Mignani AG, Vannini A (1998) Solution concentration measurements by means of optical fibre long-period gratings. Proc SPIE 3483:95–98

    Article  CAS  Google Scholar 

  17. Falciai R, Mignani AG, Vannini A (2001) Long-period gratings as solution concentration sensors. Sensors Actuators B Chem 74:74–77

    Article  Google Scholar 

  18. Gifford E, Wang Z, Ramachandran S, Heflin JR (2007) Sensitivity control of optical fiber biosensors utilizing turnaround point long period gratings with self-assembled polymer coatings. Proc SPIE 6659:66590D

    Article  Google Scholar 

  19. Gu Zh, Xu Y (2007) Design optimization of a long-period fiber grating with sol–gel coating for a gas sensor. Meas Sci Technol 18:3530–3536

    Article  CAS  Google Scholar 

  20. Hill KO, Fujii Y, Johnson DC, Kawasaki BS (1978) Photosensitivity in optical waveguides: application to reflection filter fabrication. Appl Phys Lett 32:647–649

    Article  Google Scholar 

  21. Iadicicco A, Campopiano S, Giordano M, Cutolo A, Cusano A (2005) Structured fiber Bragg gratings for sensing applications. In: First international conference on sensing technology, Palmerston North, New Zealand, 21–23 November 2005, pp 248–253

    Google Scholar 

  22. Iadicicco A, Campopiano S, Paladino D, Cutolo A, Cusano A (2007) Micro-structured fiber Bragg gratings: optimization of the fabrication process. Opt Express 15:15011–15021

    Article  CAS  Google Scholar 

  23. Kamikawachi R, Possetti G, Muller M, Fabris J (2007) Influence of the surrounding refractive index on the thermal and strain sensitivities of a cascaded long period grating. Meas Sci Technol 18:3111–3116

    Article  CAS  Google Scholar 

  24. Kersey A, Davis M, Patrick H, LeBlanc M, Koo K, Askins C, Putnam M, Friebele E (1997) Fiber grating sensors. J Lightwave Technol 15:1442–1463

    Article  Google Scholar 

  25. Klemba F, Gusso Rosado R H, Kamikawachi RC, Muller M, Fabris JL (2006) Optical fiber sensors for petroleum hydrocarbon detection in pipelines. XXIX Encontro Nacional de Física da Matéria Condensada, 2006, São Lourenço-Brazil. Optics Technical Digest, ID 559

    Google Scholar 

  26. Laffont G, Ferdinand P (2000) Fiber Bragg grating-induced coupling to cladding modes for refractive index measurements.In: Proceedings 14-th international conference on optical fiber sensors, 4185, Venice, Italy, 11–13 October 2000, pp. 326–329

    Google Scholar 

  27. Laffont G, Ferdinand P (2001) Tilted short-period fiber Bragg grating-induced coupling to cladding modes for accurate refractometry. Meas Sci Technol 12:765–770

    Article  CAS  Google Scholar 

  28. Liang W, Huang Y, Xu Y, Lee R., and Yariv A (2005) Highly sensitive fiber Bragg grating refractive index sensors. Appl Phys Lett 86:151122

    Article  Google Scholar 

  29. Maier R, Jones B, Barton J, McCullocj S, Allsop T, Jones J, Bennion I (2007) Fibre optics in palladium-based hydrogen sensing. J Opt A Pure Appl Opt 9:S45–S49

    Article  CAS  Google Scholar 

  30. Minkovich V, Hernandez D, VIllatorr J, Badeness G (2006) Microstructured optical fiber coated with thin films for gas and chemical sensing. Opt Express 14(18):8413–8418

    Article  CAS  Google Scholar 

  31. Patrick HJ, Kersey AD, Bucholtz F (1998) Analysis of the response of long period fiber gratings to external index of refraction. J Lightwave Technol 16:1606–1612

    Article  CAS  Google Scholar 

  32. Peng YT, Tang Y, Sirkis JS (1999) Hydrogen sensors based on palladium electroplated fiber Bragg gratings (FBG). In: Proceedings 13-th international conference on optical fiber sensors, 3746, Kyongju, Korea, 12–16 April 1999, pp. 171–174

    Google Scholar 

  33. Rees ND, James SW, Tatam RP, Ashwell GJ (2002) Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays. Opt Lett 27:686–688

    Article  CAS  Google Scholar 

  34. Rindorf L, Jensen JB, Dufva M, Pedersen LH, Høiby PE, Bang O (2006) Photonic crystal fiber long-period gratings for biochemical sensing. Opt Express 14:8224–8231

    Article  CAS  Google Scholar 

  35. Sang X, Yu C, Mayteevarunyoo T, Wang K, Zhang Q, Chu P (2007) Temperature insensitive chemical sensor based on a fiber Bragg grating. Sensors Actuators B Chem 120:754–575

    Article  Google Scholar 

  36. Shevchenko Y, Albert J (2007) Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt Lett 32(2):211–213

    Article  CAS  Google Scholar 

  37. Shevchenko Y, Blair D, Derosa M, Albert J (2008) DNA target detection using gold-coated tilted fiber Bragg gratings in aqueous media In: Conference on lasers and electro-optics, CLEO-2008, San Jose, CA, 4– 9 May 2008, paper CMJ4

    Google Scholar 

  38. Shu X, Huang D (1999) Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-μm period fiber grating. Opt Commun 171:65–69

    Article  CAS  Google Scholar 

  39. Tang J-L, Cheng Sh-F, Hsu W-T, Chiang Ts-Y, Chau L-K (2006) Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating. Sensors Actuators B Chem 119(1):105–109

    Article  Google Scholar 

  40. Tang J-L, Wang JN (2007) Measurement of chloride ion concentration long-period grating technology. Smart Mater Struct 16:665–672

    Article  CAS  Google Scholar 

  41. Triques A, Silva M, Gonzalez D, Celnik J, Schiller VG, D’Almeida A, Pereira F, Valente L, Braga A, Dias M (2004) Fiber Bragg grating sensing for indirect evaluation of corrosion in oil and gas facilities. Proc SPIE 5502:283–286

    Article  CAS  Google Scholar 

  42. Vasiliev S, Medvedkov O (2000) Long period refractive index fiber gratings: properties, applications, and fabrication techniques. Proc SPIE 4082:212–223

    Article  Google Scholar 

  43. Wang Zh, Heflin JR, Stolen RH, Ramachandran S (2005) Highly Sensitive Optical Response of Optical Fiber Long Period Gratings to Nanometer-thick Ionic Self-assembled Multilayers. Appl Phys Lett 86(1–3):223104

    Article  Google Scholar 

  44. Vengsarkar AM, Lemaire PJ, Judkins JB, Bhatia V, Sipe JE, Ergodan TE (1996) Long-period fiber gratings as band-rejection filters. J Lightwave Technol 14:58–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinko Eftimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eftimov, T. (2010). Applications of Fiber Gratings in Chemical and Biochemical Sensing. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors II. Springer Series on Chemical Sensors and Biosensors, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02827-4_6

Download citation

Publish with us

Policies and ethics