Skip to main content

Biomedical Imaging and Image Processing in Tissue Engineering

  • Chapter
  • First Online:

Abstract

Cell-based tissue engineering efforts, involving the incorporation of primitive (e.g., undifferentiated, pluripotent, stem) cells into biomaterial scaffolds, represent a significant research thrust in the field of regenerative medicine [7, 55, 65, 77]. The ability for these engineered tissues to regenerate functional tissues or organs hinges on the ability of the cellular component to differentiate, organize into tissue-like structures, and provide physiological signals to guide integration, vascularization, and normal remodeling processes in vivo. Despite the promise of primitive cells in tissue-regeneration strategies, they are highly complex and dynamic, and their behavior – even in well-controlled studies – is difficult to predict. Consequently, their use demands extensive characterization of both cell/biomaterial interactions in vitro, and engineered tissue/host interactions in vivo. For example, cells may be seeded into biomaterial matrices and allowed to proliferate, migrate, and mature (i.e., to differentiate and acquire specialized functions) over many days in a bioreactor. During this culture period, the ability to monitor and evaluate changes in phenotype and function, noninvasively, in detail, and in real-time could translate into significant improvements in the engineered tissue products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahn S, Chaudhari AJ, et al. Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography. Phys Med Biol. 2008;53:3921–42.

    Article  PubMed  Google Scholar 

  2. Alexandrakis G, Rannou FR, et al. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol. 2005;50(17):4225–41.

    Article  PubMed  Google Scholar 

  3. Alexandrakis G, Rannou FR, et al. Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system. Phys Med Biol. 2006;51(8):2045–53.

    Article  PubMed  Google Scholar 

  4. Allard M, Cote D, et al. Combined magnetic resonance and bioluminescence imaging of live mice. J Biomed Opt. 2007;12(3):034018.

    Article  PubMed  Google Scholar 

  5. Arridge S. Optical tomography in medical imaging. Inverse Probl. 1999;15:R41–93.

    Article  Google Scholar 

  6. Arridge SR, Schweiger M, et al. A finite-element approach for modeling photon transport in tissue. Med Phys. 1993;20(2):299–309.

    Article  CAS  PubMed  Google Scholar 

  7. Atala A. Engineering tissues, organs and cells. J Tissue Eng Regen Med. 2007;1(2):83–96.

    Article  CAS  PubMed  Google Scholar 

  8. Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic. 2001;2(11):764–74.

    Article  CAS  PubMed  Google Scholar 

  9. Aydin ED, de Oliveira CR, et al. A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method. Med Phys. 2002;29(9):2013–23.

    Article  CAS  PubMed  Google Scholar 

  10. Blum JS, Temenoff JS, et al. Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs. Biomaterials. 2004;25(27):5809–19.

    Article  CAS  PubMed  Google Scholar 

  11. Boas DA. Diffuse photon probes of structural and dynamical properties of turbid media : theory and biomedical applications [dissertations]. Graduate School of Arts and Sciences, University of Pennsylvania; 1996:xix, 298 pp.

    Google Scholar 

  12. Busbridge IW. The mathematics of radiative transfer. Cambridge, England: University Press; 1960.

    Google Scholar 

  13. Campagnola PJ, Millard AC, et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J. 2002;82(1):493–508.

    Article  CAS  PubMed  Google Scholar 

  14. Campagnola PJ, Mohler W, et al. 3-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J. 2002;82(1):493–508.

    Article  Google Scholar 

  15. Cao F, Rafie AHS, et al. In vivo imaging and evaluation of different biomatrices for improvement of stem cell survival. J Tissue Eng Regen Med. 2007;1(6):465–8.

    Article  CAS  PubMed  Google Scholar 

  16. Case KM, Zweifel PF. Linear transport theory. Reading, MA: Addison-Wesley Pub. Co; 1967.

    Google Scholar 

  17. Chandrasekhar S. Radiative transfer. Oxford: Clarendon Press; 1950.

    Google Scholar 

  18. Chaudhari AJ, Darvas F, et al. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys Med Biol. 2005;50:5421–41.

    Article  PubMed  Google Scholar 

  19. Cheong WF, Prahl SA, et al. A review of the optical properties of biological tissues. IEEE J Quantum Electron. 1990;26:2166–85.

    Article  Google Scholar 

  20. Comsa DC, Farrell TJ, et al. Quantification of bioluminescence images of point source objects using diffusion theory models. Phys Med Biol. 2006;51(15):3733–46.

    Article  CAS  PubMed  Google Scholar 

  21. Cong A, Wang G. Multi-spectral bioluminescence tomography: methodology and simulation. Int J Biomed Imaging. 2006;ID57614:1–7.

    Google Scholar 

  22. Cong W, Cong A, et al. Flux vector formulation for photon propagation in the biological tissue. Opt Lett. 2007;32(19):2837–9.

    Article  CAS  PubMed  Google Scholar 

  23. Cong W, Shen H, et al. Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function. Phys Rev E. 2007;76(5):051913.

    Article  CAS  Google Scholar 

  24. Cong W, Shen H, et al. Integral equations of the photon fluence rate and flux based on a generalized Delta-Eddington phase function. J Biomed Opt. 2008;13:024016.

    Article  PubMed  Google Scholar 

  25. Cong W, Wang G. Boundary integral method for bioluminescence tomography. J Biomed Opt. 2006;11(2):020503–1:3.

    Google Scholar 

  26. Cong WX, Durairaj K, et al. A Born-type approximation method for bioluminescence tomography. Med Phys. 2006;33(3):679–86.

    Article  PubMed  Google Scholar 

  27. Cong WX, Wang G, et al. Practical reconstruction method for bioluminescence tomography. Opt Express. 2005;13(18):6756–71.

    Article  PubMed  Google Scholar 

  28. Cunningham LP, Veilleux MP, et al. Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach. Opt Express. 2006;14(19):8613–21.

    Article  PubMed  Google Scholar 

  29. de Boer J, van Blitterswijk C, et al. Bioluminescent imaging: emerging technology for non-invasive imaging of bone tissue engineering. Biomaterials. 2006;27(9):1851–8.

    Article  PubMed  Google Scholar 

  30. Dehghani H, Davis SC, et al. Spectrally resolved bioluminescence optical tomography. Opt Lett. 2006;31(3):365–7.

    Article  PubMed  Google Scholar 

  31. Diaspro A. Confocal and two-photon microscopy: foundations, applications, and advances. New York: Wiley-Liss; 2002.

    Google Scholar 

  32. Dumas D, Werkmeister E, et al. Cartilage tissue engineering and multimodality in two-photon microscopy. 16th Mediterranean Conference on Control and Automation; Congress Centre, Ajaccio, France; 2008.

    Google Scholar 

  33. Dutta J, Ahn S, et al. Computationally efficient perturbative forward modeling for 3D multispectral bioluminescence and fluorescence tomography. Medical Imaging 2008: Physics of Medical Imaging. San Diego, CA, USA; 2008.

    Google Scholar 

  34. Feng JC, Jia KB, et al. An optimal permissible source region strategy for multispectral bioluminescence tomography. Opt Express. 2008;16(20):15640–54.

    Article  PubMed  Google Scholar 

  35. Flock ST, Patterson MS, et al. Monte-Carlo modeling of light-propagation in highly scattering tissues. 1. Model predictions and comparison with diffusion-theory. IEEE Trans Biomed Eng. 1989;36(12):1162–8.

    Article  CAS  PubMed  Google Scholar 

  36. Flock ST, Wilson BC, et al. Monte-carlo modeling of light-propagation in highly scattering tissues. 2. Comparison with measurements in phantoms. IEEE Trans Biomed Eng. 1989;36(12):1169–73.

    Article  CAS  PubMed  Google Scholar 

  37. Gu XJ, Zhang QH, et al. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt Express. 2004;12(17):3996–4000.

    Article  PubMed  Google Scholar 

  38. Han W, Wang G. Theoretical and numerical analysis on multispectral bioluminescence tomography; IMA J Appl Math. 2007;72(1):67–85.

    Google Scholar 

  39. Han WM, Cong WX, et al. Mathematical study and numerical simulation of multispectral bioluminescence tomography. Int J Biomed Imaging. 2006;ID54390:10

    Google Scholar 

  40. Han WM, Cong WX, et al. Mathematical theory and numerical analysis of bioluminescence tomography. Inverse Probl. 2006;22(5):1659–75.

    Article  Google Scholar 

  41. Han W, Cong WX, Kamran K, Wang G. An integrated solution and analysis of bioluminescence tomography and diffuse optical tomography; Communications in Numerical Methods in Engineering. 2009; 25(6):639–656.

    Google Scholar 

  42. Han WM, Kazmi K, et al. Bioluminescence tomography with optimized optical parameters. Inverse Probl. 2007. To appear.

    Google Scholar 

  43. Hastings JW. Chemistries and colors of bioluminescent reactions: a review. Gene. 1996;173(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  44. Haugland RP. A guide to fluorescent probes and labeling technologies. Chicago, IL: Molecular Probes; 2005.

    Google Scholar 

  45. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2(12):932–40.

    Article  CAS  PubMed  Google Scholar 

  46. Hillman EM, Moore A. All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nat Photonics. 2007;1(9):526–30.

    Article  CAS  PubMed  Google Scholar 

  47. Keijzer M, Jacques SL, et al. Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams. Lasers Surg Med. 1989;9(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  48. Kim AD. Transport theory for light propagation in biological tissue. J Opt Soc Am A Opt Image Sci Vis. 2004;21(5):820–7.

    Article  PubMed  Google Scholar 

  49. Klose AD. Transport-theory-based stochastic image reconstruction of bioluminescent sources. J Opt Soc Am A Opt Image Sci Vis. 2007;24(6):1601–8.

    Article  PubMed  Google Scholar 

  50. Klose AD, Larsen EW. Light transport in biological tissue based on the simplified spherical harmonics equations. J Comput Phys. 2006;220:441–70.

    Article  Google Scholar 

  51. Klose AD, Ntziachristos V, et al. The inverse source problem based on the radiative transfer equation in optical molecular imaging. J Comput Phys. 2005;202(1):323–45.

    Article  Google Scholar 

  52. Kuo C, Coquoz O, et al. Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J Biomed Opt. 2007;12(2):024007:1–12.

    Google Scholar 

  53. Kutschka I, Chen IY, et al. In vivo optical bioluminescence imaging of collagen-supported cardiac cell grafts. J Heart Lung Transplant. 2007;26(3):273–80.

    Article  PubMed  Google Scholar 

  54. Lang HD, Bouwhuis G. Optical system for a color television camera. Waltham, MA: N. A. P. C. Inc; 1961.

    Google Scholar 

  55. Lavik E, Langer R. Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol. 2004;65(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  56. Li H, Tian J, et al. A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method. Acad Radiol. 2004;11(9):1029–38.

    Article  PubMed  Google Scholar 

  57. Li S, Zhang Q, et al. Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments. Appl Opt. 2006;45(14):3390–4.

    Article  PubMed  Google Scholar 

  58. Li SH, Driessen W, et al. Bioluminescence tomography based on phantoms with different concentrations of bioluminescent cancer cells. J Opt A: Pure Appl Opt. 2006;8(9):743–6.

    Article  Google Scholar 

  59. Lv YJ, Tian J, et al. A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt Express. 2006;14(18):8211–23.

    Article  PubMed  Google Scholar 

  60. Lv YJ, Tian J, et al. Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation. Phys Med Biol. 2007;52(15):4497–512.

    Article  PubMed  Google Scholar 

  61. Manno I. Introduction to the Monte-Carlo method. Budapest: Akadémiai Kiadó; 1999.

    Google Scholar 

  62. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Develop. 2003;17(5):545–80.

    Article  CAS  PubMed  Google Scholar 

  63. Mather ML, Morgan SP, et al. Meeting the needs of monitoring in tissue engineering. Regen Med. 2007;2(2):145–60.

    Article  PubMed  Google Scholar 

  64. Campagnola PJ, Loew LM. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nature Biotechnology. 2003;21:1356–1360

    Google Scholar 

  65. Nerem RM, Seliktar D. Vascular tissue engineering. Annu Rev Biomed Eng. 2001;3:225–43.

    Article  CAS  PubMed  Google Scholar 

  66. Ntziachristos V. Fluorescence molecular imaging. Annu Rev Biomed Eng. 2006;8:1–33.

    Article  CAS  PubMed  Google Scholar 

  67. Ntziachristos V, Weissleder R. Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation. Opt Lett. 2001;26(12):893–5.

    Article  CAS  PubMed  Google Scholar 

  68. Olivo C, Alblas J, et al. In vivo bioluminescence imaging study to monitor ectopic bone formation by luciferase gene marked mesenchymal stem cells. J Orthop Res. 2008;26(7):901–9.

    Article  CAS  PubMed  Google Scholar 

  69. Panasyuk GY, Markel VA, et al. Superresolution and corrections to the diffusion approximation in optical tomography. Appl Phys Lett. 2005;87:101111.

    Article  Google Scholar 

  70. Parker KK, Ingber DE. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos Trans Royal Soc B Biol Sci. 2007;362(1484):1267–79.

    Article  CAS  Google Scholar 

  71. Pogue BW, Geimer S, et al. Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction. Appl Opt. 2001;40(4):588–600.

    Article  CAS  PubMed  Google Scholar 

  72. Prahl S. Light transport in tissue [Ph.D. thesis]. University of Texas at Austin, Austin, TX; 1988.

    Google Scholar 

  73. Rabinovich BA, Ye Y, et al. Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc Natl Acad Sci U S A. 2008;105(38):14342–6.

    Article  CAS  PubMed  Google Scholar 

  74. Schweiger M, Arridge SR, et al. The finite-element method for the propagation of light in scattering media – boundary and source conditions. Med Phys. 1995;22(11):1779–92.

    Article  CAS  PubMed  Google Scholar 

  75. Slavine NV, Lewis MA, et al. Iterative reconstruction method for light emitting sources based on the diffusion equation. Med Phys. 2006;33(1):61–8.

    Article  PubMed  Google Scholar 

  76. Stearns DG, Rice BW, et al. Method and apparatus for 3-D imaging of internal light sources. Alameda, CA: Xenogen Corporation; 2003.

    Google Scholar 

  77. Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001;52:443–51.

    Article  CAS  PubMed  Google Scholar 

  78. Sun Y, Tan HY, et al. Imaging tissue engineering scaffolds using multiphoton microscopy. Microsc Res Tech. 2008;71(2):140–5.

    Article  PubMed  Google Scholar 

  79. Troy T, Jekic-McMullen D, et al. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging. 2004;3(1):9–23.

    Article  CAS  PubMed  Google Scholar 

  80. Unlu MB, Gulsen G. Effects of the time dependence of a bioluminescent source on the tomographic reconstruction. Appl Opt. 2008;47(6):799–806.

    Article  Google Scholar 

  81. Wang G, Cong WX, et al. In vivo mouse studies with bioluminescence tomography. Opt Express. 2006;14(17):7801–9.

    Article  PubMed  Google Scholar 

  82. Wang G, Hoffman EA, et al. Development of the first bioluminescent CT scanner. Radiology. 2003;229:566.

    Google Scholar 

  83. Wang G, Hoffman EA, et al. Systems and methods for bioluminescent computed tomographic reconstruction; 2004. US.

    Google Scholar 

  84. Wang G, Li Y, et al. Uniqueness theorems in bioluminescence tomography. Med Phys. 2004;31(8):2289–99.

    Article  PubMed  Google Scholar 

  85. Wang G, Qian X, et al. Recent development in bioluminescence tomography. Curr Med Imaging Rev. 2006;2(4):453–7.

    Article  Google Scholar 

  86. Wang G, Shen H, et al. Temperature-modulated bioluminescence tomography. Opt Express. 2006;14(17):7852–71.

    Article  PubMed  Google Scholar 

  87. Wang G, Shen H, et al. The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data. Int J Biomed Imaging. 2006;2006:1–8.

    Google Scholar 

  88. Wang G, Shen H, et al. Digital spectral separation methods and systems for bioluminescence imaging. Opt Express. 2008;16(3):1719–32.

    Article  PubMed  Google Scholar 

  89. Wang L, Jacques SL, et al. MCML – Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed. 1995;47(2):131–46.

    Article  CAS  PubMed  Google Scholar 

  90. Wang LV, Wu H-I. Biomedical optics: principles and imaging. Hoboken, NJ: Wiley-Interscience; 2007.

    Google Scholar 

  91. Wilson BC, Adam G. A Monte Carlo model for the absorption and flux distributions of light in tissue. Med Phys. 1983;10(6):824–30.

    Article  CAS  PubMed  Google Scholar 

  92. Xu Y, Han M, et al. Second order parametric processes in nonlinear silica microspheres. Phys Rev Lett. 2008;100(16): 163905-1:4.

    Google Scholar 

  93. Zhang QZ, Yin L, et al. Quantitative bioluminescence tomography guided by diffuse optical tomography. Opt Express. 2008;16(3):1481–6.

    Article  PubMed  Google Scholar 

  94. Zhang X, Bai J. A table-based random sampling simulation for bioluminescence tomography. Int J Biomed Imaging. 2006;83820.

    Google Scholar 

  95. Zhao H, Doyle T, et al. Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice. J Biomed Opt. 2005;10:041210.

    Google Scholar 

  96. Zhao H, Doyle T, et al. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of defection in vivo. J Biomed Opt. 2005; 10(4):041210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiou Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Shen, H., Goldstein, A.S., Wang, G. (2011). Biomedical Imaging and Image Processing in Tissue Engineering. In: Pallua, N., Suscheck, C. (eds) Tissue Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02824-3_9

Download citation

Publish with us

Policies and ethics